较难算法美丽塔时间复杂度O(n)

题目

给你一个长度为 n 下标从 0 开始的整数数组 maxHeights 。你的任务是在坐标轴上建 n 座塔。第 i 座塔的下标为 i ,高度为 heights[i] 。

如果以下条件满足,我们称这些塔是 美丽 的:

1 <= heights[i] <= maxHeights[i]

heights 是一个 山状 数组。

如果存在下标 i 满足以下条件,那么我们称数组 heights 是一个 山状 数组:

对于所有 0 < j <= i ,都有 heights[j - 1] <= heights[j]

对于所有 i <= k < n - 1 ,都有 heights[k + 1] <= heights[k]

请你返回满足 美丽塔 要求的方案中,高度和的最大值 。

时间复杂度

O(nlogn)

典型样例分析

当i是山顶时,Left[i]记录[0,i]的最大高度和,Right[i]记录[i,n)的最大高度和。

笨办法

由于赛场时间紧,压力大。所以只想到一个笨办法。从小到处理最大高度。下面以Left[i]为例来说明。如果不存在j(0<=j<i)使得maxHeight[j] < maxHeight[i] ,那么[0,i]的高度全为)maxHeight[i],如{5,4,3,2,1};如果只存在唯一的j,则[0,j]高度不变,(j,i]的高度为maxHeight[i],如{3,1,2}。如果存在多个j,以j最大的为准,如{2,1,3}。如果maxHeight[j] == maxHeight[i],则height[j]变和不变的结果都一样。

代码

核心代码

cpp 复制代码
class Solution {
public:
    long long maximumSumOfHeights(vector<int>& maxHeights) {
        m_c = maxHeights.size();
        std::multimap<int, int> mHeightIndex;
        for (int i = 0; i < m_c; i++)
        {
            mHeightIndex.emplace(maxHeights[i], i);
        }
        
        for (const auto& [h, i] : mHeightIndex)
        {
            {//计算m_mLeft
                auto it = m_mLeft.lower_bound(i);
                if (m_mLeft.begin() == it)
                {
                    m_mLeft[i] = (long long)h * (i + 1);
                }
                else
                {
                    auto pre = std::prev(it);
                    m_mLeft[i] = pre->second + (long long)h * (i - pre->first);
                }
            }
            {//计算m_mRight
                auto it = m_mRight.upper_bound(i);
                if (m_mRight.end() == it)
                {
                    m_mRight[i] = (long long)h * (m_c - i);
                }
                else
                {
                    m_mRight[i] = (long long)it->second + (long long)h * (it->first - i);
                }
            }
        }
        long long llRet = 0;
        for (int i = 0; i < m_c; i++)
        {//假定i是山顶            
            long long llCur = m_mLeft[i] + m_mRight[i] - maxHeights[i];
            llRet = max(llRet, llCur);
        }        
        return llRet;
    }
    int m_c;
    std::map<int, long long> m_mLeft, m_mRight;
};

测试用代码

class CDebug : public Solution

{

public:

long long maximumSumOfHeights( vector<int>& maxHeights, vector<int>& vLeft, vector<int>& vRight)

{

long long llRet = Solution::maximumSumOfHeights(maxHeights);

for (const auto& it : m_mLeft)

{

assert(it.second == vLeft[it.first]);

}

for (const auto& it : m_mRight)

{

assert(it.second == vRight[it.first]);

}

//调试用代码

std::cout << "Left: ";

for (int i = 0; i < m_c; i++)

{

std::cout << m_mLeft[i] << " ";

}

std::cout << std::endl;

std::cout << "Right: ";

for (int i = 0; i < m_c; i++)

{

std::cout << m_mRight[i] << " ";

}

std::cout << std::endl;

return llRet;

}

};

int main()

{

vector < vector<vector<int>>> param = { {{1,2,3,4,5} ,{1,3,6,10,15},{5,8,9,8,5}} ,

{{5,4,3,2,1},{5,8,9,8,5},{15,10,6,3,1}} ,

{{1,2,4,3,5},{1,3,7,9,14},{5,8,10,6,5}},

{{3,1,2}, {3,2,4},{5,2,2}},

{{2,1,3},{2,2,5},{4,2,3}} };

for ( auto& vv : param)

{

auto res = CDebug().maximumSumOfHeights(vv[0],vv[1],vv[2]);

}

//auto res = Solution().maxPalindromes("rire", 3);

//CConsole::Out(res);

}

测试环境

Win10,VS2022 C++17

相关下载

word版讲解
https://download.csdn.net/download/he_zhidan/88348653

源码及测试用例
https://download.csdn.net/download/he_zhidan/88370053

相关推荐
MZWeiei1 小时前
PTA:运用顺序表实现多项式相加
算法
GISer_Jing1 小时前
Javascript排序算法(冒泡排序、快速排序、选择排序、堆排序、插入排序、希尔排序)详解
javascript·算法·排序算法
cookies_s_s1 小时前
Linux--进程(进程虚拟地址空间、页表、进程控制、实现简易shell)
linux·运维·服务器·数据结构·c++·算法·哈希算法
不想编程小谭2 小时前
力扣LeetCode: 2506 统计相似字符串对的数目
c++·算法·leetcode
水蓝烟雨2 小时前
[HOT 100] 2187. 完成旅途的最少时间
算法·hot 100
曼巴UE53 小时前
UE5.3 C++ TArray系列(一)
开发语言·c++·ue5
菜鸟一枚在这3 小时前
深度解析建造者模式:复杂对象构建的优雅之道
java·开发语言·算法
gyeolhada3 小时前
2025蓝桥杯JAVA编程题练习Day5
java·数据结构·算法·蓝桥杯
阿巴~阿巴~3 小时前
多源 BFS 算法详解:从原理到实现,高效解决多源最短路问题
开发语言·数据结构·c++·算法·宽度优先
给bug两拳4 小时前
Day9 25/2/22 SAT
算法