较难算法美丽塔时间复杂度O(n)

题目

给你一个长度为 n 下标从 0 开始的整数数组 maxHeights 。你的任务是在坐标轴上建 n 座塔。第 i 座塔的下标为 i ,高度为 heights[i] 。

如果以下条件满足,我们称这些塔是 美丽 的:

1 <= heights[i] <= maxHeights[i]

heights 是一个 山状 数组。

如果存在下标 i 满足以下条件,那么我们称数组 heights 是一个 山状 数组:

对于所有 0 < j <= i ,都有 heights[j - 1] <= heights[j]

对于所有 i <= k < n - 1 ,都有 heights[k + 1] <= heights[k]

请你返回满足 美丽塔 要求的方案中,高度和的最大值 。

时间复杂度

O(nlogn)

典型样例分析

当i是山顶时,Left[i]记录[0,i]的最大高度和,Right[i]记录[i,n)的最大高度和。

笨办法

由于赛场时间紧,压力大。所以只想到一个笨办法。从小到处理最大高度。下面以Left[i]为例来说明。如果不存在j(0<=j<i)使得maxHeight[j] < maxHeight[i] ,那么[0,i]的高度全为)maxHeight[i],如{5,4,3,2,1};如果只存在唯一的j,则[0,j]高度不变,(j,i]的高度为maxHeight[i],如{3,1,2}。如果存在多个j,以j最大的为准,如{2,1,3}。如果maxHeight[j] == maxHeight[i],则height[j]变和不变的结果都一样。

代码

核心代码

cpp 复制代码
class Solution {
public:
    long long maximumSumOfHeights(vector<int>& maxHeights) {
        m_c = maxHeights.size();
        std::multimap<int, int> mHeightIndex;
        for (int i = 0; i < m_c; i++)
        {
            mHeightIndex.emplace(maxHeights[i], i);
        }
        
        for (const auto& [h, i] : mHeightIndex)
        {
            {//计算m_mLeft
                auto it = m_mLeft.lower_bound(i);
                if (m_mLeft.begin() == it)
                {
                    m_mLeft[i] = (long long)h * (i + 1);
                }
                else
                {
                    auto pre = std::prev(it);
                    m_mLeft[i] = pre->second + (long long)h * (i - pre->first);
                }
            }
            {//计算m_mRight
                auto it = m_mRight.upper_bound(i);
                if (m_mRight.end() == it)
                {
                    m_mRight[i] = (long long)h * (m_c - i);
                }
                else
                {
                    m_mRight[i] = (long long)it->second + (long long)h * (it->first - i);
                }
            }
        }
        long long llRet = 0;
        for (int i = 0; i < m_c; i++)
        {//假定i是山顶            
            long long llCur = m_mLeft[i] + m_mRight[i] - maxHeights[i];
            llRet = max(llRet, llCur);
        }        
        return llRet;
    }
    int m_c;
    std::map<int, long long> m_mLeft, m_mRight;
};

测试用代码

class CDebug : public Solution

{

public:

long long maximumSumOfHeights( vector<int>& maxHeights, vector<int>& vLeft, vector<int>& vRight)

{

long long llRet = Solution::maximumSumOfHeights(maxHeights);

for (const auto& it : m_mLeft)

{

assert(it.second == vLeft[it.first]);

}

for (const auto& it : m_mRight)

{

assert(it.second == vRight[it.first]);

}

//调试用代码

std::cout << "Left: ";

for (int i = 0; i < m_c; i++)

{

std::cout << m_mLeft[i] << " ";

}

std::cout << std::endl;

std::cout << "Right: ";

for (int i = 0; i < m_c; i++)

{

std::cout << m_mRight[i] << " ";

}

std::cout << std::endl;

return llRet;

}

};

int main()

{

vector < vector<vector<int>>> param = { {{1,2,3,4,5} ,{1,3,6,10,15},{5,8,9,8,5}} ,

{{5,4,3,2,1},{5,8,9,8,5},{15,10,6,3,1}} ,

{{1,2,4,3,5},{1,3,7,9,14},{5,8,10,6,5}},

{{3,1,2}, {3,2,4},{5,2,2}},

{{2,1,3},{2,2,5},{4,2,3}} };

for ( auto& vv : param)

{

auto res = CDebug().maximumSumOfHeights(vv[0],vv[1],vv[2]);

}

//auto res = Solution().maxPalindromes("rire", 3);

//CConsole::Out(res);

}

测试环境

Win10,VS2022 C++17

相关下载

word版讲解
https://download.csdn.net/download/he_zhidan/88348653

源码及测试用例
https://download.csdn.net/download/he_zhidan/88370053

相关推荐
胖咕噜的稞达鸭3 小时前
算法入门:滑动窗口--->找到字符串中所有的字母异位词,串联所有的子串,最小覆盖子串
数据库·redis·算法
滨HI04 小时前
C++ opencv简化轮廓
开发语言·c++·opencv
小青龙emmm4 小时前
2025级C语言第二次周测(国教专用)题解
c语言·开发语言·算法
学习路上_write4 小时前
FREERTOS_互斥量_创建和使用
c语言·开发语言·c++·stm32·单片机·嵌入式硬件
WolfGang0073214 小时前
代码随想录算法训练营Day28 | 509.斐波那契数列、70.爬楼梯、746.使用最小花费爬楼梯
算法
Boop_wu4 小时前
[Java EE] 多线程进阶(JUC)(2)
java·jvm·算法
闻缺陷则喜何志丹5 小时前
【SOSDP模板 容斥原理 逆向思考】3757. 有效子序列的数量|分数未知
c++·算法·力扣·容斥原理·sosdp·逆向思考
CoovallyAIHub5 小时前
如何在手机上轻松识别多种鸟类?我们发现了更简单的秘密……
深度学习·算法·计算机视觉
第二只羽毛5 小时前
遵守robots协议的友好爬虫
大数据·爬虫·python·算法·网络爬虫
BestOrNothing_20156 小时前
一篇搞懂 C++ 重载:函数重载 + 运算符重载,从入门到会用(含 ++、<<、== 实战)
c++·函数重载·运算符重载·operator·前置后置++·重载与重写