求和中x:y=g(x)的含义

概念解释

p ( y ) = ∑ x : y = g ( x ) p ( x ) p(y)=\sum\limits_{x:y=g(x)}p(x) p(y)=x:y=g(x)∑p(x)

这个表达式表示随机变量 Y 的概率分布 p(y) 是通过对随机变量 X 进行函数映射 y = g ( x ) y = g(x) y=g(x) 后得到的。让我更详细地解释:

  • Y Y Y 和 X X X 是两个随机变量,其中 X X X 具有概率分布 p ( x ) p(x) p(x),而 Y Y Y 具有概率分布 p ( y ) p(y) p(y)。
  • y = g ( x ) y = g(x) y=g(x) 是一个函数关系,它将随机变量 X X X 的取值映射到随机变量 Y Y Y 的取值。这表示 Y Y Y 的值是由 X X X 经过函数 g g g 的变换而来。
  • 表达式 ∑ x : y = g ( x ) p ( x ) \sum_{x : y = g(x)} p(x) ∑x:y=g(x)p(x) 表示对所有满足 y = g ( x ) y = g(x) y=g(x) 的 x x x 值进行求和,然后使用这些 x x x 值对应的概率 p ( x ) p(x) p(x) 来计算 Y Y Y 的概率分布 p ( y ) p(y) p(y)。换句话说,它表示了将 X X X 映射到 Y Y Y 的过程中,每个可能的 y y y 值的概率是如何形成的。

这种方式的概率分布计算通常出现在随机变量之间的函数关系或变换中。通过将 X X X 映射到 Y Y Y,我们可以推导出 Y Y Y 的概率分布。这在统计学、信息论和机器学习等领域中经常用于分析和建模。

举例说明

让我们通过一个简单的例子来说明这个概念。

假设我们有两个随机变量 X X X 和 Y Y Y,其中 X X X 表示一枚硬币的抛掷结果,可以取值 "正面"(H)或 "反面"(T),并且 X X X 的概率分布如下:

P ( X = H ) = 0.6 P ( X = T ) = 0.4 \begin{align*} P(X = \text{H}) &= 0.6 \\ P(X = \text{T}) &= 0.4 \end{align*} P(X=H)P(X=T)=0.6=0.4

现在,我们定义一个函数 g ( x ) g(x) g(x),它将 X X X 的取值映射到 Y Y Y 的取值。我们规定:

g ( H ) = 1 g ( T ) = 0 g(\text{H}) = 1 \\ g(\text{T}) = 0 g(H)=1g(T)=0

这表示如果硬币抛掷结果为 "正面",则 Y Y Y 的取值为 1,如果硬币抛掷结果为 "反面",则 Y Y Y 的取值为 0。

接下来,我们可以使用上面提到的表达式来计算 Y Y Y 的概率分布 p ( y ) p(y) p(y)。根据我们的定义, y = g ( x ) y = g(x) y=g(x),因此:

p ( 1 ) = ∑ x : g ( x ) = 1 p ( x ) = p ( H ) = 0.6 p(1) = \sum_{x : g(x) = 1} p(x) = p(\text{H}) = 0.6 p(1)=x:g(x)=1∑p(x)=p(H)=0.6
p ( 0 ) = ∑ x : g ( x ) = 0 p ( x ) = p ( T ) = 0.4 p(0) = \sum_{x : g(x) = 0} p(x) = p(\text{T}) = 0.4 p(0)=x:g(x)=0∑p(x)=p(T)=0.4

所以,通过将 X X X 映射到 Y Y Y,我们得到了 Y Y Y 的概率分布:

P ( Y = 1 ) = 0.6 P ( Y = 0 ) = 0.4 \begin{align*} P(Y = 1) &= 0.6 \\ P(Y = 0) &= 0.4 \end{align*} P(Y=1)P(Y=0)=0.6=0.4

这个例子中,我们通过函数映射 g ( x ) g(x) g(x) 将 X X X 映射到 Y Y Y,并且通过对满足映射条件的 x x x 值的概率进行求和,得到了 Y Y Y 的概率分布。这就是表达式 p ( y ) = ∑ x : y = g ( x ) p ( x ) p(y) = \sum_{x : y = g(x)} p(x) p(y)=∑x:y=g(x)p(x) 的实际应用。

相关推荐
leo__5201 天前
基于两步成像算法的聚束模式SAR MATLAB实现
开发语言·算法·matlab
前端小白在前进1 天前
力扣刷题:在排序数组中查找元素的第一个和最后一个位置
数据结构·算法·leetcode
学废了wuwu1 天前
机器学习模型评估指标完全解析:准确率、召回率、F1分数等
人工智能·机器学习
某林2121 天前
基于SLAM Toolbox的移动机器人激光建图算法原理与工程实现
stm32·嵌入式硬件·算法·slam
修炼地1 天前
代码随想录算法训练营第四十三天 | 图论理论基础、深搜理论基础、卡码网98. 所有可达路径、797. 所有可能的路径、广搜理论基础
算法·深度优先·图论
iAkuya1 天前
(leetcode)力扣100 23反转链表(迭代||递归)
算法·leetcode·链表
剪一朵云爱着1 天前
PAT 1095 Cars on Campus
算法·pat考试
亚里随笔1 天前
突破性框架TRAPO:统一监督微调与强化学习的新范式,显著提升大语言模型推理能力
人工智能·深度学习·机器学习·语言模型·llm·rlhf
MicroTech20251 天前
激光点云快速配准算法创新突破,MLGO微算法科技发布革命性点云配准算法技术
人工智能·科技·算法
救救孩子把1 天前
50-机器学习与大模型开发数学教程-4-12 Bootstrap方法
人工智能·机器学习·bootstrap