求和中x:y=g(x)的含义

概念解释

p ( y ) = ∑ x : y = g ( x ) p ( x ) p(y)=\sum\limits_{x:y=g(x)}p(x) p(y)=x:y=g(x)∑p(x)

这个表达式表示随机变量 Y 的概率分布 p(y) 是通过对随机变量 X 进行函数映射 y = g ( x ) y = g(x) y=g(x) 后得到的。让我更详细地解释:

  • Y Y Y 和 X X X 是两个随机变量,其中 X X X 具有概率分布 p ( x ) p(x) p(x),而 Y Y Y 具有概率分布 p ( y ) p(y) p(y)。
  • y = g ( x ) y = g(x) y=g(x) 是一个函数关系,它将随机变量 X X X 的取值映射到随机变量 Y Y Y 的取值。这表示 Y Y Y 的值是由 X X X 经过函数 g g g 的变换而来。
  • 表达式 ∑ x : y = g ( x ) p ( x ) \sum_{x : y = g(x)} p(x) ∑x:y=g(x)p(x) 表示对所有满足 y = g ( x ) y = g(x) y=g(x) 的 x x x 值进行求和,然后使用这些 x x x 值对应的概率 p ( x ) p(x) p(x) 来计算 Y Y Y 的概率分布 p ( y ) p(y) p(y)。换句话说,它表示了将 X X X 映射到 Y Y Y 的过程中,每个可能的 y y y 值的概率是如何形成的。

这种方式的概率分布计算通常出现在随机变量之间的函数关系或变换中。通过将 X X X 映射到 Y Y Y,我们可以推导出 Y Y Y 的概率分布。这在统计学、信息论和机器学习等领域中经常用于分析和建模。

举例说明

让我们通过一个简单的例子来说明这个概念。

假设我们有两个随机变量 X X X 和 Y Y Y,其中 X X X 表示一枚硬币的抛掷结果,可以取值 "正面"(H)或 "反面"(T),并且 X X X 的概率分布如下:

P ( X = H ) = 0.6 P ( X = T ) = 0.4 \begin{align*} P(X = \text{H}) &= 0.6 \\ P(X = \text{T}) &= 0.4 \end{align*} P(X=H)P(X=T)=0.6=0.4

现在,我们定义一个函数 g ( x ) g(x) g(x),它将 X X X 的取值映射到 Y Y Y 的取值。我们规定:

g ( H ) = 1 g ( T ) = 0 g(\text{H}) = 1 \\ g(\text{T}) = 0 g(H)=1g(T)=0

这表示如果硬币抛掷结果为 "正面",则 Y Y Y 的取值为 1,如果硬币抛掷结果为 "反面",则 Y Y Y 的取值为 0。

接下来,我们可以使用上面提到的表达式来计算 Y Y Y 的概率分布 p ( y ) p(y) p(y)。根据我们的定义, y = g ( x ) y = g(x) y=g(x),因此:

p ( 1 ) = ∑ x : g ( x ) = 1 p ( x ) = p ( H ) = 0.6 p(1) = \sum_{x : g(x) = 1} p(x) = p(\text{H}) = 0.6 p(1)=x:g(x)=1∑p(x)=p(H)=0.6
p ( 0 ) = ∑ x : g ( x ) = 0 p ( x ) = p ( T ) = 0.4 p(0) = \sum_{x : g(x) = 0} p(x) = p(\text{T}) = 0.4 p(0)=x:g(x)=0∑p(x)=p(T)=0.4

所以,通过将 X X X 映射到 Y Y Y,我们得到了 Y Y Y 的概率分布:

P ( Y = 1 ) = 0.6 P ( Y = 0 ) = 0.4 \begin{align*} P(Y = 1) &= 0.6 \\ P(Y = 0) &= 0.4 \end{align*} P(Y=1)P(Y=0)=0.6=0.4

这个例子中,我们通过函数映射 g ( x ) g(x) g(x) 将 X X X 映射到 Y Y Y,并且通过对满足映射条件的 x x x 值的概率进行求和,得到了 Y Y Y 的概率分布。这就是表达式 p ( y ) = ∑ x : y = g ( x ) p ( x ) p(y) = \sum_{x : y = g(x)} p(x) p(y)=∑x:y=g(x)p(x) 的实际应用。

相关推荐
想跑步的小弱鸡4 小时前
Leetcode hot 100(day 3)
算法·leetcode·职场和发展
Uzuki5 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
xyliiiiiL6 小时前
ZGC初步了解
java·jvm·算法
爱的叹息6 小时前
RedisTemplate 的 6 个可配置序列化器属性对比
算法·哈希算法
蹦蹦跳跳真可爱5896 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
独好紫罗兰7 小时前
洛谷题单2-P5713 【深基3.例5】洛谷团队系统-python-流程图重构
开发语言·python·算法
每次的天空7 小时前
Android学习总结之算法篇四(字符串)
android·学习·算法
请来次降维打击!!!8 小时前
优选算法系列(5.位运算)
java·前端·c++·算法
qystca8 小时前
蓝桥云客 刷题统计
算法·模拟
别NULL8 小时前
机试题——统计最少媒体包发送源个数
c++·算法·媒体