求和中x:y=g(x)的含义

概念解释

p ( y ) = ∑ x : y = g ( x ) p ( x ) p(y)=\sum\limits_{x:y=g(x)}p(x) p(y)=x:y=g(x)∑p(x)

这个表达式表示随机变量 Y 的概率分布 p(y) 是通过对随机变量 X 进行函数映射 y = g ( x ) y = g(x) y=g(x) 后得到的。让我更详细地解释:

  • Y Y Y 和 X X X 是两个随机变量,其中 X X X 具有概率分布 p ( x ) p(x) p(x),而 Y Y Y 具有概率分布 p ( y ) p(y) p(y)。
  • y = g ( x ) y = g(x) y=g(x) 是一个函数关系,它将随机变量 X X X 的取值映射到随机变量 Y Y Y 的取值。这表示 Y Y Y 的值是由 X X X 经过函数 g g g 的变换而来。
  • 表达式 ∑ x : y = g ( x ) p ( x ) \sum_{x : y = g(x)} p(x) ∑x:y=g(x)p(x) 表示对所有满足 y = g ( x ) y = g(x) y=g(x) 的 x x x 值进行求和,然后使用这些 x x x 值对应的概率 p ( x ) p(x) p(x) 来计算 Y Y Y 的概率分布 p ( y ) p(y) p(y)。换句话说,它表示了将 X X X 映射到 Y Y Y 的过程中,每个可能的 y y y 值的概率是如何形成的。

这种方式的概率分布计算通常出现在随机变量之间的函数关系或变换中。通过将 X X X 映射到 Y Y Y,我们可以推导出 Y Y Y 的概率分布。这在统计学、信息论和机器学习等领域中经常用于分析和建模。

举例说明

让我们通过一个简单的例子来说明这个概念。

假设我们有两个随机变量 X X X 和 Y Y Y,其中 X X X 表示一枚硬币的抛掷结果,可以取值 "正面"(H)或 "反面"(T),并且 X X X 的概率分布如下:

P ( X = H ) = 0.6 P ( X = T ) = 0.4 \begin{align*} P(X = \text{H}) &= 0.6 \\ P(X = \text{T}) &= 0.4 \end{align*} P(X=H)P(X=T)=0.6=0.4

现在,我们定义一个函数 g ( x ) g(x) g(x),它将 X X X 的取值映射到 Y Y Y 的取值。我们规定:

g ( H ) = 1 g ( T ) = 0 g(\text{H}) = 1 \\ g(\text{T}) = 0 g(H)=1g(T)=0

这表示如果硬币抛掷结果为 "正面",则 Y Y Y 的取值为 1,如果硬币抛掷结果为 "反面",则 Y Y Y 的取值为 0。

接下来,我们可以使用上面提到的表达式来计算 Y Y Y 的概率分布 p ( y ) p(y) p(y)。根据我们的定义, y = g ( x ) y = g(x) y=g(x),因此:

p ( 1 ) = ∑ x : g ( x ) = 1 p ( x ) = p ( H ) = 0.6 p(1) = \sum_{x : g(x) = 1} p(x) = p(\text{H}) = 0.6 p(1)=x:g(x)=1∑p(x)=p(H)=0.6
p ( 0 ) = ∑ x : g ( x ) = 0 p ( x ) = p ( T ) = 0.4 p(0) = \sum_{x : g(x) = 0} p(x) = p(\text{T}) = 0.4 p(0)=x:g(x)=0∑p(x)=p(T)=0.4

所以,通过将 X X X 映射到 Y Y Y,我们得到了 Y Y Y 的概率分布:

P ( Y = 1 ) = 0.6 P ( Y = 0 ) = 0.4 \begin{align*} P(Y = 1) &= 0.6 \\ P(Y = 0) &= 0.4 \end{align*} P(Y=1)P(Y=0)=0.6=0.4

这个例子中,我们通过函数映射 g ( x ) g(x) g(x) 将 X X X 映射到 Y Y Y,并且通过对满足映射条件的 x x x 值的概率进行求和,得到了 Y Y Y 的概率分布。这就是表达式 p ( y ) = ∑ x : y = g ( x ) p ( x ) p(y) = \sum_{x : y = g(x)} p(x) p(y)=∑x:y=g(x)p(x) 的实际应用。

相关推荐
GalaxyPokemon1 小时前
归并排序:分治思想的高效排序
数据结构·算法·排序算法
ThreeYear_s1 小时前
基于FPGA的PID算法学习———实现PI比例控制算法
学习·算法·fpga开发
Coding小公仔3 小时前
LeetCode 240 搜索二维矩阵 II
算法·leetcode·矩阵
C++chaofan3 小时前
74. 搜索二维矩阵
java·算法·leetcode·矩阵
Studying 开龙wu4 小时前
机器学习监督学习实战五:六种算法对声呐回波信号进行分类
学习·算法·机器学习
Mi Manchi264 小时前
力扣热题100之二叉树的层序遍历
python·算法·leetcode
wu~9704 小时前
leetcode:42. 接雨水(秒变简单题)
算法·leetcode·职场和发展
zhurui_xiaozhuzaizai6 小时前
模型训练-关于token【低概率token, 高熵token】
人工智能·算法·自然语言处理
ThreeYear_s6 小时前
基于FPGA的PID算法学习———实现PID比例控制算法
学习·算法·fpga开发