【机器学习】训练集/验证集/测试集释疑

文章目录

      • 序言
      • [1. 训练集、验证集、测试集是什么](#1. 训练集、验证集、测试集是什么)
      • [2. 为什么需要验证集](#2. 为什么需要验证集)
      • [3. 验证集是必须的吗](#3. 验证集是必须的吗)
      • [4. 验证集和测试集上的表现会不同吗](#4. 验证集和测试集上的表现会不同吗)
      • [5. 如何从Train/Test Set划分Validation Set](#5. 如何从Train/Test Set划分Validation Set)
      • [6. 训练集、验证集和测试集的比例怎么设置](#6. 训练集、验证集和测试集的比例怎么设置)
      • [7. 模型表现不好时测试集可以反复使用来调整模型吗](#7. 模型表现不好时测试集可以反复使用来调整模型吗)
      • [8. 训练集、验证集和测试集的数据是否可以有所重合](#8. 训练集、验证集和测试集的数据是否可以有所重合)
      • [9. 常见的机器学习模型验证方法有哪些](#9. 常见的机器学习模型验证方法有哪些)

序言

  • 关于数据集的一些疑问厘清

1. 训练集、验证集、测试集是什么

  • 训练集:Training Dataset. 用于训练和调整模型参数

    • 训练阶段
  • 验证集:Validation Dataset. 用于验证模型精度和调整模型超参数

    • 模型挑选阶段
    • 验证集的作用体现在训练的过程中
    • 比如:通过查看训练集和验证集的损失值随着epoch的变化关系可以看出模型是否过拟合,如果是可 以及时停止训练,然后根据情况调整模型结构和超参数,大大节省时间
  • 测试集:Test Dataset. 验证模型的泛化能力

    • 验证阶段
    • 测试集的作用体现在测试的过程中

2. 为什么需要验证集

  • 首先,划分训练集、验证集和测试集,能够避免信息泄漏
  • 模型的参数和超参,模型存在两个最优:训练集参数 的最优 + 超参数的最优。如果没有验证集,假设训练好的模型在测试集上表现不好,将无法确认是模型参数过拟合/欠拟合,还是超参数设置不合理,所以需要验证集来选择超参数
  • 验证集和测试集一样,都是未知的,如果模型适用于验证集,那么也大概会适用于测试集

3. 验证集是必须的吗

  • 训练集是练习题 + 验证集是模拟题 + 测试集是考试题
  • 训练集:调试网络参数;验证集:没有参与网络参数更新
  • 没有超参数就不需要验证集。如果不需要调整超参和early stop,就不需要验证集,把验证集并入训练集即可,但是不需要超参的模型比较少见
  • 验证集是用来选取最优超参数的
  • 在实际应用中,有可能不继续划分验证集和测试集,就相当于假设验证集和测试集分布高度相似,依次来验证开发算法的泛化性能

4. 验证集和测试集上的表现会不同吗

  • 会不会出现调优后的超参数在验证集上优秀,但在测试集上却表现不如模型超参数?
  • 一般不会,除非验证集和测试集的数据分布有明显不同

5. 如何从Train/Test Set划分Validation Set

  • 从training set中拿出一部分作为validation set,最好让validation set和test set的大小和数据分布接近。如下

6. 训练集、验证集和测试集的比例怎么设置

  • 如果有惯例,按照惯例
  • 没有的话,可以是10:1,8:2,7:3,6:4等。传统上是6:2:2,即训练集:验证集:测试集 = 6:2:2是可以的
  • 如果不需要验证集,训练集:测试集 = 8:2或7:3
  • 网上还看到两种划分比例:
    • 训练集:验证集:测试集 = 8:0.5:1.5
    • 训练集:验证集:测试集 = 7:1:2
  • 数据集划分没有明确规定,但可以参考以下原则
    • 对于小规模样本集(几万量级),常用的分配比例是 60% 训练集、20% 验证集、20% 测试集
    • 对于大规模样本集(百万级以上),只要验证集和测试集的数量足够即可。例如有 100w 条数据,那么留 1w 验证集,1w 测试集即可。1000w 的数据,同样留 1w 验证集和 1w 测试集
    • 超参数越少,或者超参数很容易调整,那么可以减少验证集的比例,更多的分配给训练集

7. 模型表现不好时测试集可以反复使用来调整模型吗

  • 如果只是调整超参数,那么重复使用测试集属于作弊
  • 如果不光调整超参、还对模型设计、训练方法做改进,可以重复使用

8. 训练集、验证集和测试集的数据是否可以有所重合

  • 数据少,又不想使用数据增强,可以使用交叉验证的方法
  • 但各数据集的数据肯定都是划分清楚的

9. 常见的机器学习模型验证方法有哪些

  • (1)留出法

    • 按照固定比例将数据集固定的划分为训练集、验证集、测试集
  • (2)k折交叉验证

    • 留出法 对数据的静态 划分可能得到不同的模型;k折交叉验证是一种动态验证的方法,可以降低数据划分带来的影响
    • 步骤:
      • 1)将数据集分为训练集和测试集,将测试集放在一边
      • 2)将训练集分为 k 份
      • 3)每次使用 k 份中的 1 份作为验证集,其他全部作为训练集
      • 4)通过 k 次训练后,我们得到了 k 个不同的模型
      • 5)评估 k 个模型的效果,从中挑选效果最好的超参数
      • 6)使用最优的超参数,然后将 k 份数据全部作为训练集重新训练模型,得到最终模型
      • 7)还有一种说法是,将k次loss的平均作为性能度量得到最终模型,如下图
  • (3)留一法

    • 是k折交叉法的一个变种,将k定义为n(n为样本数)
    • 一般在数据缺乏时使用,即适合于小样本的情况,优点是样本利用率高,缺点是计算繁琐
    • 每次的测试集都只有一个样本,要进行 n 次训练和预测
    • 这个方法用于训练的数据只比整体数据集少了一个样本,因此最接近原始样本的分布。但是训练复杂度增加了,因为模型的数量与原始数据样本数量相同
  • (4)自助法

    • 自助法以有放回/自助采样为基础
    • 每次随机从 D D D(样本数为m)中挑选一个样本,放入 D ′ D' D′中,然后将样本放回D中,重复m次之后,得到了包含m个样本的数据集 D ′ D' D′
    • 样本在m次采样中始终不被采到的概率是
      ( 1 − 1 m ) m (1-\frac{1}{m} )^{m} (1−m1)m
    • 取极限得到
      lim ⁡ m → ∞ ( 1 − 1 m ) m = 1 e = 0.368 \lim_{m \to \infty} (1-\frac{1}{m} )^{m} =\frac{1}{e} =0.368 m→∞lim(1−m1)m=e1=0.368
    • 即D约有 36.8 % 36.8\% 36.8%的样本未出现在 D ′ D′ D′中。于是将 D ′ D′ D′用作训练集, D D D\ D ′ D′ D′剩下的用作测试集
    • 这样,仍然使用m个训练样本,但约有1/3未出现在训练集中的样本被用作测试集
    • 这种方法优点是自助法在数据集较小、难以有效划分训练/测试集时很有用;自助法改变了初始数据集的分布,这会引入估计偏差

如有帮助,请点赞收藏支持


【参考文章】
训练集验证集测试集
训练集验证集测试集的通俗解释
能不能不要验证集
验证集和测试集有什么区别
常用的交叉验证技术
机器学习的验证方法
模型评估方法

created by shuaixio, 2023.09.30

相关推荐
**之火2 分钟前
(五)机器学习 - 数据分布
人工智能·机器学习
martian6654 分钟前
人工智能机器学习基本概念详解
人工智能·机器学习
小雄abc29 分钟前
决定系数R2 浅谈三 : 决定系数R2与相关系数r的关系、决定系数R2是否等于相关系数r的平方
经验分享·笔记·深度学习·算法·机器学习·学习方法·论文笔记
知来者逆2 小时前
Layer-Condensed KV——利用跨层注意(CLA)减少 KV 缓存中的内存保持 Transformer 1B 和 3B 参数模型的准确性
人工智能·深度学习·机器学习·transformer
宸码3 小时前
【机器学习】手写数字识别的最优解:CNN+Softmax、Sigmoid与SVM的对比实战
人工智能·python·神经网络·算法·机器学习·支持向量机·cnn
睡觉狂魔er3 小时前
自动驾驶控制与规划——Project 1: 车辆纵向控制
人工智能·机器学习·自动驾驶
GIS 数据栈3 小时前
自动驾驶领域常用的软件与工具
人工智能·机器学习·自动驾驶
博雅智信4 小时前
人工智能-自动驾驶领域
人工智能·python·深度学习·yolo·机器学习·计算机视觉·自动驾驶
坐吃山猪5 小时前
机器学习01-发展历史
人工智能·机器学习
一只小灿灿5 小时前
K-Means 算法原理及其 Python 与 C# 实现
python·机器学习·kmeans