C++算法:图中的最短环

题目

现有一个含 n 个顶点的 双向 图,每个顶点按从 0 到 n - 1 标记。图中的边由二维整数数组 edges 表示,其中 edges[i] = [ui, vi] 表示顶点 ui 和 vi 之间存在一条边。每对顶点最多通过一条边连接,并且不存在与自身相连的顶点。

返回图中 最短 环的长度。如果不存在环,则返回 -1 。

环 是指以同一节点开始和结束,并且路径中的每条边仅使用一次。

2 <= n <= 1000

1 <= edges.length <= 1000

edges[i].length == 2

0 <= ui, vi < n

ui != vi

不存在重复的边

分析

返回还是真环

利用BFS求到A的最短距离,B和C到A的距离都为1,处理BC是发现B和C都已经和A连通,说明存在环。注意:求EFG到点D的距离,处理完DE ED EF FE FG后,处理GF,发现F和G都和D连通。判断是返回,还是真环有两种思路:

一,记录已经使用的双向边,枚举新边的时候,忽略。此方案容易理解。

二,记录各点的最短距离的前一点。此方案性能。

各点都要BFS

如果以H为源点,则最短的环长4。以k为源点,最短的环是3。

多个连通区域

由于所有点都会作为起点,所以所有点都会处理。和起点不连通的点不会重复处理。

不会遗漏任意环

某个包括x的奇数长度的环,假定其长度为len2+1,环上有两个点距离x为len,假定先处理的为x1,后处理的为x2。处理x1->x2是发现此环。假定此环长为偶数,假定其长度为len 2+2。环上有两个点距离x为len,假定先处理的为x1,后处理的为x2。距离x为len+1的点为x3,则处理x2->x3时,发现此环

不会误判环

发现cur和next都和源点连通,那说明next在cur之前已经处理,也就是vDis[next] <= vDis[cur]。vDis[next]不会比v[cur]小2,否则源点->next->cur更短。也就是vDis[next]和vDis[cur]相等或少1。源点到next的最短路径,不会包括cur,否则vDis[next]大于v[cur]。两者相等的情况,cur的最短路径不会包括next。少1的情况,如果cur的最短路径包括next,则最后一条边是next->cur。

方案一代码

class Solution {

public:

int findShortestCycle(int n, vector<vector>& edges) {

CNeiBo2 neiBo(n, edges, false);

for (int i = 0; i < n; i++)

{

Do(neiBo.m_vNeiB, i);

}

return (INT_MAX == m_iMinCycle) ? -1 : m_iMinCycle;

}

void Do(const vector<vector>& vNeiB, int src)

{

int n = vNeiB.size();

vector<unordered_set> setHas(n);

vector vDis(n, -1);

queue q;

vDis[src] = 0;

q.emplace(src);

while (q.size())

{

const auto cur = q.front();

q.pop();

for (const auto& next : vNeiB[cur])

{

if (setHas[next].count(cur))

{

continue;

}

setHas[cur].emplace(next);

if (-1 != vDis[next])

{

m_iMinCycle = min(m_iMinCycle, vDis[cur] + vDis[next] + 1);

continue;

}

vDis[next] = vDis[cur] + 1;

q.emplace(next);

}

}

}

int m_iMinCycle = INT_MAX;

};

方案二代码

cpp 复制代码
class Solution {
public:
  int findShortestCycle(int n, vector<vector<int>>& edges) {
    CNeiBo2 neiBo(n, edges, false);
    for (int i = 0; i < n; i++)
    {
      Do(neiBo.m_vNeiB, i);
    }
    return (INT_MAX == m_iMinCycle) ? -1 : m_iMinCycle;
  }
  void Do(const vector<vector<int>>& vNeiB, int src)
  {
    int n = vNeiB.size();
    vector<int> vDis(n, -1), vPre(n,-1);
    queue<int> q;
    vDis[src] = 0;
    vPre[src] = -1;
    q.emplace(src);
    while (q.size())
    {
      const auto cur = q.front();
      q.pop();
      for (const auto& next : vNeiB[cur])
      {   
        if (-1 != vDis[next])
        {
          if (vPre[cur] != next)
          {
            m_iMinCycle = min(m_iMinCycle, vDis[cur] + vDis[next] + 1);
          }
          continue;
        }
        vDis[next] = vDis[cur] + 1;
        vPre[next] = cur;
        q.emplace(next);
      }
    }   
  }
  int m_iMinCycle = INT_MAX;
};

方案三

方案一和方案二时间复杂度都是O(n^2),方案一比方案二慢。方案三相比方案一,稍稍提速。

void Do(const vector<vector>& vNeiB, int src)

{

int n = vNeiB.size();

vector<int> vDis(n, -1);
queue<int> q;
vDis[src] = 0;
q.emplace(src);
while (q.size())
{
  const auto cur = q.front();
  q.pop();
  for (const auto& next : vNeiB[cur])
  {
    if (m_vHasDo[next][cur])
    {
      continue;
    }
    m_vHasDo[cur][next] = 1;
    if (-1 != vDis[next])
    {
      m_iMinCycle = min(m_iMinCycle, vDis[cur] + vDis[next] + 1);
      continue;
    }
    vDis[next] = vDis[cur] + 1;
    q.emplace(next);
  }
}

}

2023年4月版本

class Solution {

public:

int findShortestCycle(int n, vector<vector>& edges) {

m_iN = n;

m_vNeiB.resize(n);

for (const auto&v : edges)

{

m_vNeiB[v[0]].emplace_back(v[1]);

m_vNeiB[v[1]].emplace_back(v[0]);

}

	for (int i = 0; i < n; i++)
	{
		bfs(i);
	}
	return (INT_MAX == m_iRet) ? -1 : m_iRet;
}
void bfs(int iRoot)
{
	std::vector<int> vDis(m_iN, -1);
	vDis[iRoot] = 0;
	std::queue<pair<int,int>> que;
	que.emplace(iRoot, -1);//当前节点,父节点
	while (que.size())
	{
		const int iPre = que.front().first;
		const int iPrePre = que.front().second;
		que.pop();
		for (const auto& next : m_vNeiB[iPre])
		{
			if (-1 == vDis[next])
			{
				vDis[next] = vDis[iPre] + 1;
				que.emplace(next, iPre);
			}
			else
			{
				if (next == iPrePre)
				{
					continue;
				}
				m_iRet = min(m_iRet, vDis[iPre] + 1 + vDis[next]);
			}
		}
		
	}
}
vector<std::vector<int>> m_vNeiB;

int m_iN;
int m_iRet = INT_MAX;

};

其它

视频课程

如果你觉得复杂,想从简单的算法开始,可以学习我的视频课程。
https://edu.csdn.net/course/detail/38771

我的其它课程
https://edu.csdn.net/lecturer/6176

测试环境

win7 VS2019 C++17

相关下载

算法精讲《闻缺陷则喜算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

相关推荐
IT猿手11 分钟前
2025高维多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
开发语言·人工智能·算法·机器学习·matlab·无人机·cocos2d
阿乾之铭26 分钟前
动态规划算法
算法·动态规划
菠菠萝宝28 分钟前
【代码随想录】第九章-动态规划(上)
算法·动态规划·01背包·完全背包·多重背包·上楼梯
DTDanteDong29 分钟前
从头再来!社招找工作——算法题复习九:动态规划
算法·动态规划
Coco_926434 分钟前
Hot100 动态规划
算法·动态规划
卑微的小鬼42 分钟前
golang的var ,make ,new, := 的区别
算法
MZWeiei1 小时前
PTA:有序顺序表的插入
数据结构
01_1 小时前
力扣hot100 ——和为k的子数组 前后缀和(积)各种情况总结
数据结构·算法·leetcode·前后缀和(积)计算
刀客1232 小时前
数据结构与算法再探(七)查找-排序
数据结构
一只码代码的章鱼2 小时前
数据结构与算法-搜索-双向搜索 和 A*算法(字串变换,八数码,第k短路)
算法