为什么Open3D可视化TensorFlow张量速度超慢

问题描述

在使用Open3D可视化TensorFlow张量表示的点云时速度超慢

原因分析

可能是因为Open3D没有针对tf.Tensor做优化,也可能是tf.Tensor本身没有对张量的操作做优化,所以可能如果要在CPU中计算,numpy可能性能更好。

解决方案

open3d.utility.Vector3dVector传参一定不要直接传tf.Tensor会非常慢,应该按照Open3D方文档的要求传numpy.ndarry类型的数据。故需要使用tf.Tensor张量的numpy()方法将tf张量转化为numpy张量,具体操作如下:

python 复制代码
...
np_points = tf_points.numpy()
pcd.points = open3d.utility.Vector3dVector(np_points)
...
相关推荐
Theodore_102224 分钟前
深度学习(9)导数与计算图
人工智能·深度学习·机器学习·矩阵·线性回归
PPIO派欧云1 小时前
PPIO上新GPU实例模板,一键部署PaddleOCR-VL
人工智能
TGITCIC3 小时前
金融RAG落地之痛:不在模型,而在数据结构
人工智能·ai大模型·ai agent·ai智能体·开源大模型·金融ai·金融rag
@forever@4 小时前
【JAVA】LinkedList与链表
java·python·链表
程序员爱钓鱼5 小时前
Python编程实战:面向对象与进阶语法——类型注解与代码规范(PEP 8)
后端·python·ipython
程序员爱钓鱼5 小时前
Python实战:用高德地图API批量获取地址所属街道并写回Excel
后端·python·ipython
reasonsummer6 小时前
【教学类-97-06】20251105“葡萄”橡皮泥黏贴(小班主题《苹果与橘子》)
python
chenzhiyuan20186 小时前
《十五五规划》下的AI边缘计算机遇:算力下沉与工业智能化
人工智能·边缘计算
whaosoft-1436 小时前
51c深度学习~合集11
人工智能
Tiandaren6 小时前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析