为什么Open3D可视化TensorFlow张量速度超慢

问题描述

在使用Open3D可视化TensorFlow张量表示的点云时速度超慢

原因分析

可能是因为Open3D没有针对tf.Tensor做优化,也可能是tf.Tensor本身没有对张量的操作做优化,所以可能如果要在CPU中计算,numpy可能性能更好。

解决方案

open3d.utility.Vector3dVector传参一定不要直接传tf.Tensor会非常慢,应该按照Open3D方文档的要求传numpy.ndarry类型的数据。故需要使用tf.Tensor张量的numpy()方法将tf张量转化为numpy张量,具体操作如下:

python 复制代码
...
np_points = tf_points.numpy()
pcd.points = open3d.utility.Vector3dVector(np_points)
...
相关推荐
大千AI助手24 分钟前
SWE-bench:真实世界软件工程任务的“试金石”
人工智能·深度学习·大模型·llm·软件工程·代码生成·swe-bench
hqxstudying25 分钟前
JAVA项目中邮件发送功能
java·开发语言·python·邮件
Q_Q51100828544 分钟前
python的软件工程与项目管理课程组学习系统
spring boot·python·django·flask·node.js·php·软件工程
天上的光1 小时前
17.迁移学习
人工智能·机器学习·迁移学习
合作小小程序员小小店1 小时前
SDN安全开发环境中常见的框架,工具,第三方库,mininet常见指令介绍
python·安全·生成对抗网络·网络安全·网络攻击模型
后台开发者Ethan1 小时前
Python需要了解的一些知识
开发语言·人工智能·python
北京_宏哥2 小时前
Python零基础从入门到精通详细教程11 - python数据类型之数字(Number)-浮点型(float)详解
前端·python·面试
猫头虎2 小时前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体快速构建工具:FastbuildAI
人工智能·开源·prompt·github·aigc·ai编程·ai-native
重启的码农2 小时前
ggml 介绍 (6) 后端 (ggml_backend)
c++·人工智能·神经网络
重启的码农2 小时前
ggml介绍 (7)后端缓冲区 (ggml_backend_buffer)
c++·人工智能·神经网络