Zynq UltraScale+ XCZU5EV 纯VHDL解码 IMX214 MIPI 视频,2路视频拼接输出,提供vivado工程源码和技术支持

目录

Zynq UltraScale+ XCZU5EV 纯VHDL解码 IMX214 MIPI 视频,2路视频拼接输出,提供vivado工程源码和技术支持

1、前言

FPGA图像采集领域目前协议最复杂、技术难度最高的应该就是MIPI协议了,MIPI解码难度之高,令无数英雄竞折腰,以至于Xilinx官方不得不推出专用的IP核供开发者使用,不然太高端的操作直接吓退一大批FPGA开发者,就没人玩儿了。

本设计基于Xilinx的Zynq UltraScale+ XCZU5EV 开发板,采集2路IMX214 摄像头的4Line MIPI视频,IMX214 摄像头引脚接Zynq UltraScale+ XCZU5EV 的LVDS BANK,经过MC20901芯片将IMX214 的MIPI信号转换为LVDS信号输出给FPGA,然后CSI2 RX模块输出Bayer视频,再经过Bayer转RGB模块输出RGB视频,再经伽马矫正模块增强图像质量,然后调用2个Xilinx官方的Video Scaler 做图像缩放,将输入的1920x1080视频缩小到960x1080;然后调用2个Xilinx官方的VDMA将图像送入PS端的DDR3中做三帧缓存后读出;最后通过板载的DP接口将视频输出显示器;

本文详细描述了FPGA 纯VHDL解码 IMX214 MIPI 视频,2路视频拼接输出的设计方案,工程代码编译通过后上板调试验证,可直接项目移植,适用于在校学生做毕业设计、研究生项目开发,也适用于在职工程师做项目开发,可应用于医疗、军工等行业的数字成像和图像传输领域;

提供完整的、跑通的工程源码和技术支持;

工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

关于MIPI协议,请自行搜索,csdn就有很多大佬讲得很详细,我就不多写这块了;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、我这里已有的 MIPI 编解码方案

我这里目前已有丰富的基于FPGA的MIPI编解码方案,主要是MIPI解码的,既有纯vhdl实现的MIPI解码,也有调用Xilinx官方IP实现的MIPI解码,既有2line的MIPI解码,也有4line的MIPI解码,既有4K分辨率的MIPI解码,也有小到720P分辨率的MIPI解码,既有基于Xilinx平台FPGA的MIPI解码也有基于Altera平台FPGA的MIPI解码,还有基于Lattice平台FPGA的MIPI解码,后续还将继续推出更过国产FPGA的MIPI解码方案,毕竟目前国产化方案才是未来主流,后续也将推出更多MIPI编码的DSI方案,努力将FPGA的MIPI编解码方案做成白菜价。。。

基于此,我专门建了一个MIPI编解码的专栏,并将MIPI编解码的博客都放到了专栏里整理,对FPGA编解码MIPI有项目需求或学习兴趣的兄弟可以去我的专栏看看,专栏地址如下:
点击直接前往专栏

3、本 MIPI CSI2 模块性能及其优越性

一个字:牛逼,表现如下:

1:纯VHDL代码实现,学习性和阅读性达到天花板;

2:移植性还可以,只要兼容Xilinx解串源语的FPGA均可移植;

3:算法达到天花板,标准的CSI2接收协议实现解码;

4:实用性达到天花板,采用IMX214 摄像头作为输入(主要是便宜),不同于市面上验证性和实验性的工程,本设计直接面向实用工程,贴近真实项目,做类似项目的兄弟可直接拿去用,一个月工资直接拿到手。。。

5:支持高达1920X1080分辨率的MIPI视频解码;

6:时序收敛很到位,考虑到MIPI协议的复杂性和时序的高要求,所以没有采用时序收敛不强的verilog,而是VHDL,虽然阅读性可能会低一些,但用户只需要知道用户接口即可,并不需要去看内部的复杂代码;

7:使用方便,虽然是VHDL代码实现,但均已封装为自定义IP,用户无需关心代码实现的复杂逻辑,仅需调用IP,通过UI界面配置即可使用,当然,如果你想看里面的源码依然可以直接打开观看;

8:同时采集2路非同源时钟的MIPI相机,解码后做2路视频拼接显示,高度符合现实高端项目;

9:Zynq UltraScale+ XCZU5EV 作为主控,很高端;

4、详细设计方案

设计原理框图

设计原理框图如下:

IMX214 摄像头及其配置

我使用到的IMX214 摄像头输出为4 Line MIPI格式,输出分辨率为1080p@60Hz;输出 RAW10数据;Zynq UltraScale+ XCZU5EV 通过调用IIC配置IMX214 ,这个操作在SDK软件里完成;

D-PHY 模块

D-PHY采用硬件方案实现,用MC20901芯片(主要是便宜,性能一般)将IMX214 的MIPI信号转换为LVDS信号输出给FPGA,原理框图如下:

CSI-2-RX 模块

关于MIPI CSI-2-RX,网上介绍原理和概念的文章一大堆,在此不再重复,这里重点介绍用FPGA实现;

我们采用纯VHDL代码实现MIPI CSI-2-RX功能,为了照顾大家不习惯阅读VHDL代码的习惯,我们已经将改部分代码封装成为了自定义IP,用户无需关心代码实现的复杂逻辑,仅需调用IP,通过UI界面配置即可使用,当然,如果你想看里面的源码依然可以直接打开观看;本MIPI CSI-2-RX只能支持4 line的MIPI视频,数据格式支持RAW10;

本工程中的CSI-2-RX自定义IP调用如下:

MIPI CSI-2-RX纯VHDL源码如下:

Bayer转RGB模块

关于MIPI Bayer转RGB,网上介绍原理和概念的文章一大堆,在此不再重复,这里重点介绍用FPGA实现;

我们采用纯VHDL代码实现MIPI Bayer转RGB功能,为了照顾大家不习惯阅读VHDL代码的习惯,我们已经将改部分代码封装成为了自定义IP,用户无需关心代码实现的复杂逻辑,仅需调用IP,通过UI界面配置即可使用,当然,如果你想看里面的源码依然可以直接打开观看;

本工程中的Bayer转RGB自定义IP调用如下:

MIPI Bayer转RGB纯VHDL源码如下:

伽马矫正模块

关于MIPI 伽马矫正,网上介绍原理和概念的文章一大堆,在此不再重复,这里重点介绍用FPGA实现;

我们采用纯VHDL代码实现MIPI 伽马矫正功能,为了照顾大家不习惯阅读VHDL代码的习惯,我们已经将改部分代码封装成为了自定义IP,用户无需关心代码实现的复杂逻辑,仅需调用IP,通过UI界面配置即可使用,当然,如果你想看里面的源码依然可以直接打开观看;

本工程中的伽马矫正自定义IP调用如下:

MIPI 伽马矫正纯VHDL源码如下:

VDMA图像缓存

调用2路VDMA,配置为写模式,只需要将视频写入DDR4,这样设计的目的是做2路视频拼接,2路VDMA写入图像的DDR地址不同,可以保证图像在内存中地址不冲突,读出图像时仅需在SDK里调用DP显示的API库函数即可,这既是常规的设计思路,也是减轻HP接口AXI4总线负载的要求;

配置为只写模式的VDMA如下:

Video Scaler 图像缓存

调用2个Xilinx官方的Video Scaler 做图像缩放,将输入的1920x1080视频缩小到960x1080;这样做的目的是将2路视频拼接到输出分辨率为1920x1080的显示器上去;Video Scaler的缩放操作在SDK中完成,IP如下:

DP 输出

Zynq UltraScale+ XCZU5EV 开发板板载了一路DP输出接口,在SDK里直接DP显示的API库函数即可,不过需要注意的是,在建立SDK工程时,DP驱动名称主要手动更改,如图:

5、vivado工程详解

PL端FPGA硬件设计

开发板FPGA型号:Xilinx--Zynq UltraScale±-xazu5ev-sfvc784-1-i;

开发环境:Vivado2020.2;

输入:2路IMX214 MIPI 4 Line RAW10;

输出:HDMI 2分频拼接显示,1080P;

应用:FPGA 纯VHDL解码 IMX214 MIPI 视频,2路视频拼接输出;

工程Block Design如下:

工程代码架构如下:

综合编译完成后的FPGA资源消耗和功耗预估如下:

PS端Vitis SDK软件设计

SDK C语言软件代码架构如下:

6、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;

2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件-->另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;

3:如果你的vivado版本高于本工程vivado版本,解决如下:

打开工程后会发现IP都被锁住了,如下:

此时需要升级IP,操作如下:

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:


更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;

2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;

3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

7、上板调试验证

输出如下:

8、福利:工程代码的获取

福利:工程代码的获取

代码太大,无法邮箱发送,以某度网盘链接方式发送,

资料获取方式:私,或者文章末尾的V名片。

网盘资料如下:

相关推荐
上理考研周导师3 小时前
第二章 虚拟仪器及其构成原理
fpga开发
FPGA技术实战4 小时前
《探索Zynq MPSoC》学习笔记(二)
fpga开发·mpsoc
bigbig猩猩15 小时前
FPGA(现场可编程门阵列)的时序分析
fpga开发
Terasic友晶科技19 小时前
第2篇 使用Intel FPGA Monitor Program创建基于ARM处理器的汇编或C语言工程<二>
fpga开发·汇编语言和c语言
码农阿豪20 小时前
基于Zynq FPGA对雷龙SD NAND的测试
fpga开发·sd nand·spi nand·spi nand flash·工业级tf卡·嵌入式tf卡
江山如画,佳人北望21 小时前
EDA技术简介
fpga开发
淘晶驰AK21 小时前
电子设计竞赛准备经历分享
嵌入式硬件·fpga开发
最好有梦想~21 小时前
FPGA时序分析和约束学习笔记(4、IO传输模型)
笔记·学习·fpga开发
檀越剑指大厂1 天前
【基于Zynq FPGA对雷龙SD NAND的测试】
fpga开发
9527华安2 天前
FPGA视频GTH 8b/10b编解码转PCIE3.0传输,基于XDMA中断架构,提供工程源码和技术支持
fpga开发·音视频·pcie·gth·xdma·pcie3.0