趋动云云端部署ChatGLM3-6B

趋动云端部署ChatGLM3-6B

文章目录

本部分主要内容:
1.熟悉趋动云项目创建流程
2.动手部署ChatGLM3-6B模型

1.项目创建

首先是趋动云的项目的创建,其主要以项目为载体,一个项目内可以进行三个主要流程:开发,训练及可视化,本次Task主要使用开发流程。项目的创建是流程模块化的,按照框架填内容就行。

前两个项目的文档内容(果然文档是最重要的啊),最简单的名称和简介。然后是开发所需要的代码,分两种,本地上传需上传压缩包,外部代码库没有试过。然后是运行环境,可以直接导入公开的镜像。趋动云有许多官方镜像,这是给人感觉最方便的地方。然后是数据和模型,这里也有很多公开的内容,可以直接绑定。最后几个是项目的整理和协作方面的内容。代码+环境+数据+模型,一站式服务,简单清晰。

2.模型部署

模型的部署大致分两个步骤,环境的适配,代码的适配。

环境适配主要是升级镜像环境,安装依赖:

bash 复制代码
apt-get update && apt-get install unzip

就是这一步之前,需不需要有个换源的介绍?(否则有可能升级失败)但感觉镜像是已经换过了,速度很快,流畅进行。

bash 复制代码
git config --global url."https://gitclone.com/".insteadOf https:/

因为github国内限速,需要修改源,有一点建议,这里改为 insteadOf https://github.com/感觉会更好点。

参考:git clone 换源 / GitHub 国内镜像

然后是升级pip及下载仓库,仓库地址:https://github.com/THUDM/ChatGLM3.git

按照requirement.txt下载依赖,因为镜像有torch了,这里的requirement.txt需要把torch去掉。(这里的依赖带版本号的,真好)

以上环境就OK了,接下来是适配代码,需要修改模型加载的位置,以及设置gradio服务本地运行。

修改模型加载位置,在两个demo文件中,把get_model()中的默认加载位置"THUDM/chatglm2-6b"改为"/gemini/pretrain"或者相对路径".../.../pretrain"

然后是修改web_demo.py中最后一行(web_demo.py是gradio框架,web_demo2.py是streamlit框架服务)

python 复制代码
demo.queue().launch(share=False, inbrowser=True)
# 说明: 如果返回 "To create a public link, set share=True in launch().",
# 可能是 frpc 下载与安装失败,可在代码中设置程序本地运行以规避
# 改为下面形式,其中77应该是你镜像开放的端口号,我这里是77
demo.queue().launch(share=False, inbrowser=True, server_name='0.0.0.0', server_port=77)

以上代码适配完毕。接下来,运行!

bash 复制代码
// 在ChatGLM3文件夹下运行
// gradio
python web_demo.py

// streamlit
// 需要根据启动后出现的端口号,新增一个容器外部端口,再用外部访问链接访问后,就可以加载模型了
streamlit run web_demo2.py

运行效果,很丝滑

gradio:

streamlit:

3.总结

趋动云平台的使用还是十分简洁的,本地项目代码可保存,也可以方便地使用临时制作镜像功能制作镜像(虽然只有10次),社区中镜像资源,模型与数据都比较多,一切都是现成的,上桌就可以吃饭,过程很丝滑,对小白友好。这次依赖中都包含版本号,没有因为依赖版本问题导致部署失败,很赞。ChatGLM3-6B的效果也还可以,特别是对中英文的支持,感觉是国内最好的基础模型,期待其微调的表现。

参考

1.如何用免费GPU线上跑AI项目实践【DataWhale】
2.配置pip国内源链接

相关推荐
这儿有一堆花2 小时前
向工程神经网络对二进制加法的巧妙解决方案
人工智能·深度学习·神经网络
点云SLAM2 小时前
方差的迭代计算公式
大数据·深度学习·数据分析·概率论·数学原理·概论率
auutuumn5 小时前
PyTorch深度学习实战01:全流程体验深度学习
人工智能·pytorch·深度学习
B站_计算机毕业设计之家5 小时前
深度学习:Yolo水果检测识别系统 深度学习算法 pyqt界面 训练集测试集 深度学习 数据库 大数据 (建议收藏)✅
数据库·人工智能·python·深度学习·算法·yolo·pyqt
xier_ran7 小时前
深度学习:为什么不能将多层神经网络参数全部初始化为零以及如何进行随机初始化
人工智能·深度学习
夫唯不争,故无尤也8 小时前
PyTorch中张量和模型的核心属性解析
人工智能·pytorch·深度学习
鲸鱼在dn8 小时前
大型语言模型推理能力评估——李宏毅2025大模型课程第9讲内容
人工智能·语言模型·自然语言处理
PKNLP8 小时前
14.大语言模型微调语料构建
人工智能·语言模型·模型微调
Wu Liuqi8 小时前
【大模型学习4】大语言模型(LLM)详解
人工智能·学习·语言模型·大模型
哥布林学者8 小时前
吴恩达深度学习课程二: 改善深层神经网络 第二周:优化算法(三)Momentum梯度下降法
深度学习·ai