趋动云云端部署ChatGLM3-6B

趋动云端部署ChatGLM3-6B

文章目录

本部分主要内容:
1.熟悉趋动云项目创建流程
2.动手部署ChatGLM3-6B模型

1.项目创建

首先是趋动云的项目的创建,其主要以项目为载体,一个项目内可以进行三个主要流程:开发,训练及可视化,本次Task主要使用开发流程。项目的创建是流程模块化的,按照框架填内容就行。

前两个项目的文档内容(果然文档是最重要的啊),最简单的名称和简介。然后是开发所需要的代码,分两种,本地上传需上传压缩包,外部代码库没有试过。然后是运行环境,可以直接导入公开的镜像。趋动云有许多官方镜像,这是给人感觉最方便的地方。然后是数据和模型,这里也有很多公开的内容,可以直接绑定。最后几个是项目的整理和协作方面的内容。代码+环境+数据+模型,一站式服务,简单清晰。

2.模型部署

模型的部署大致分两个步骤,环境的适配,代码的适配。

环境适配主要是升级镜像环境,安装依赖:

bash 复制代码
apt-get update && apt-get install unzip

就是这一步之前,需不需要有个换源的介绍?(否则有可能升级失败)但感觉镜像是已经换过了,速度很快,流畅进行。

bash 复制代码
git config --global url."https://gitclone.com/".insteadOf https:/

因为github国内限速,需要修改源,有一点建议,这里改为 insteadOf https://github.com/感觉会更好点。

参考:git clone 换源 / GitHub 国内镜像

然后是升级pip及下载仓库,仓库地址:https://github.com/THUDM/ChatGLM3.git

按照requirement.txt下载依赖,因为镜像有torch了,这里的requirement.txt需要把torch去掉。(这里的依赖带版本号的,真好)

以上环境就OK了,接下来是适配代码,需要修改模型加载的位置,以及设置gradio服务本地运行。

修改模型加载位置,在两个demo文件中,把get_model()中的默认加载位置"THUDM/chatglm2-6b"改为"/gemini/pretrain"或者相对路径".../.../pretrain"

然后是修改web_demo.py中最后一行(web_demo.py是gradio框架,web_demo2.py是streamlit框架服务)

python 复制代码
demo.queue().launch(share=False, inbrowser=True)
# 说明: 如果返回 "To create a public link, set share=True in launch().",
# 可能是 frpc 下载与安装失败,可在代码中设置程序本地运行以规避
# 改为下面形式,其中77应该是你镜像开放的端口号,我这里是77
demo.queue().launch(share=False, inbrowser=True, server_name='0.0.0.0', server_port=77)

以上代码适配完毕。接下来,运行!

bash 复制代码
// 在ChatGLM3文件夹下运行
// gradio
python web_demo.py

// streamlit
// 需要根据启动后出现的端口号,新增一个容器外部端口,再用外部访问链接访问后,就可以加载模型了
streamlit run web_demo2.py

运行效果,很丝滑

gradio:

streamlit:

3.总结

趋动云平台的使用还是十分简洁的,本地项目代码可保存,也可以方便地使用临时制作镜像功能制作镜像(虽然只有10次),社区中镜像资源,模型与数据都比较多,一切都是现成的,上桌就可以吃饭,过程很丝滑,对小白友好。这次依赖中都包含版本号,没有因为依赖版本问题导致部署失败,很赞。ChatGLM3-6B的效果也还可以,特别是对中英文的支持,感觉是国内最好的基础模型,期待其微调的表现。

参考

1.如何用免费GPU线上跑AI项目实践【DataWhale】
2.配置pip国内源链接

相关推荐
FF-Studio18 分钟前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
MO2T38 分钟前
使用 Flask 构建基于 Dify 的企业资金投向与客户分类评估系统
后端·python·语言模型·flask
CoovallyAIHub1 小时前
YOLOv13都来了,目标检测还卷得动吗?别急,还有这些新方向!
深度学习·算法·计算机视觉
静心问道3 小时前
APE:大语言模型具有人类水平的提示工程能力
人工智能·算法·语言模型·大模型
网安INF5 小时前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归
CoovallyAIHub6 小时前
RTMPose:重新定义多人姿态估计的“实时”标准!
深度学习·算法·计算机视觉
香宝的最强后援XD7 小时前
Cursor无限邮箱续费方法
语言模型·chatgpt·文心一言
静心问道7 小时前
SELF-INSTRUCT:使用自生成指令对齐语言模型
人工智能·语言模型·大模型
hjs_deeplearning8 小时前
认知篇#10:何为分布式与多智能体?二者联系?
人工智能·分布式·深度学习·学习·agent·智能体
瑶光守护者8 小时前
【卫星通信】超低比特率语音编解码器(ULBC)的信道特性评估
深度学习·华为·卫星通信·3gpp·ulbc