卡尔曼滤波EKF

目录

一、概述

二、卡尔曼滤波的5个公式

三、应用案例:汽车运动

四、应用案例:温度估计

五、总结


一、概述

初学者对于卡尔曼滤波5个公式有点懵,本文先接地气地介绍5个公式,然后举两个常用例子加强理解,同时附有Matlab代码。卡尔曼滤波在大学课程《现代控制理论》当中有涉及详细讲解。卡尔曼滤波使用条件有:

  • 1、线性系统;
  • 2、系统中噪声(不确定性)服从高斯分布。下文中的方差、误差、偏差、协方差都指不确定性的意思。误差 = 偏差;方差 = 偏差 ²。

在无人驾驶导航定位当中,需要多传感器对汽车位姿进行检测 ;在多传感器融合方面,使用卡尔曼滤波理论较多。对预测公式新的理解:第一个公式求解的是状态变量的期望值 。第二个公式求解的是状态变量的方差。

二、卡尔曼滤波的5个公式

以下内容有手写word,都是原创哈。

三、应用案例:汽车运动

完整的matlab代码:

Matlab 复制代码
clear all;
close all;
clc;
Z = (1:100); %观测值
noise = randn(1,100);%1行100列高斯白噪声
Z = Z + noise;

X = [0;0];%状态值
P = [1 0; 0 1];%状态协方差矩阵
F = [1 1; 0 1];%状态转移矩阵
Q = [0.0001, 0; 0 0.0001];%状态转移协方差矩阵
H = [1 0];%观测矩阵
R = 1;%观测噪声方差

figure;
%hold on;
speed = [];
distance = [];
for i =1:100
   %% 预测
   X_ = F*X;
   P_ = F*P*F' + Q;
   %% 更新
   K = P_*H'/(H*P_*H' + R);
   X = X_ + K*(Z(i) - H*X_);
   P = (eye(2) - K*H)*P_;

   speed(i) = X(2);
   distance(i) = X(1);
   %%plot(X(1), X(2));
end
plot(distance, speed);

四、应用案例:温度估计

五、总结

在线性高斯系统中,卡尔曼滤波器构成了该系统中的最大后验概率估计。而且,由于高斯分布经过线性变换后仍服从高斯分布,所以整个过程中我们没有进行任何的近似。可以说,卡尔曼滤波器构成了线性系统的最优无偏估计

SLAM 中的运动方程和观测方程通常是非线性函数,尤其是视觉 SLAM 中的相机模型,需要使用相机内参模型以及李代数表示的位姿,更不可能是一个线性系统。一个高斯分布,经过非线性变换后,往往不再是高斯分布,所以在非线性系统中,我们必须取一定的近似,将一个非高斯的分布近似成一个高斯分布。我们希望把卡尔曼滤波器的结果拓展到非线性系统中来,称为扩展卡尔曼滤波器(Ex-tended Kalman Filter,EKF)。通常的做法是,在某个点附近考虑运动方程以及观测方程的一阶泰勒展开,只保留一阶项,即线性的部分,然后按照线性系统进行推导。

EKF的局限性:

    1. 首先,滤波器方法在一定程度上假设了马尔可夫性,也就是 k 时刻的状态只与 k −1时刻相关,而与 k − 1 之前的状态和观测都无关(或者和前几个有限时间的状态相关)。这有点像是在视觉里程计中,只考虑相邻两帧关系一样。如果当前帧确实与很久之前的数据有关(例如回环),那么滤波器就会难以处理这种情况。而非线性优化方法则倾向于使用所有的历史数据。它不光考虑邻近时刻的特征点与轨迹关系,更会把考虑很久之前的状态也考虑进来,称为全体时间上的 SLAM(Full-SLAM)。在这种意义下,非线性优化方法使用了更多信息,当然也需要更多的计算。
  • 2.与第六章介绍的优化方法相比,EKF 滤波器仅在 k−1时刻相机位姿处做了一次线性化,然后就直接根据这次线性化结果,把后验概率给算了出来。这相当于在说,我们认为该点处的线性化近似,在后验概率处仍然是有效的。而实际上,当我们离开工作点较远的时候,一阶泰勒展开并不一定能够近似整个函数,这取决于运动模型和观测模型的非线性情况。如果它们有强烈的非线性,那线性近似就只在很小范围内成立,不能认为在很远的地方仍能用线性来近似。这就是 EKF 的非线性误差 ,是它的主要问题所在。在优化问题中,尽管我们也做一阶(最速下降)或二阶(G-N 或 L-M)的近似,但每迭代一次,状态估计发生改变之后,我们会重新对新的估计点做泰勒展开,而不像EKF 那样只在固定点上做一次泰勒展开。这就导致优化方法适用范围更广,则在状态变化较大时亦能适用。
  • 3.从程序实现上来说,EKF 需要存储状态量的均值和方差 ,并对它们进行维护和更新。如果把路标也放进状态的话,由于视觉 SLAM 中路标数量很大,这个存储量是相当可观的,且与状态量呈平方增长(因为要存储协方差矩阵)。因此,EKF SLAM 普遍认为不可适用于大型场景。
相关推荐
xiandong201 小时前
240929-CGAN条件生成对抗网络
图像处理·人工智能·深度学习·神经网络·生成对抗网络·计算机视觉
嵌入式AI的盲1 小时前
数组指针和指针数组
数据结构·算法
innutritious2 小时前
车辆重识别(2020NIPS去噪扩散概率模型)论文阅读2024/9/27
人工智能·深度学习·计算机视觉
橙子小哥的代码世界2 小时前
【深度学习】05-RNN循环神经网络-02- RNN循环神经网络的发展历史与演化趋势/LSTM/GRU/Transformer
人工智能·pytorch·rnn·深度学习·神经网络·lstm·transformer
Indigo_code3 小时前
【数据结构】【顺序表算法】 删除特定值
数据结构·算法
985小水博一枚呀4 小时前
【深度学习基础模型】神经图灵机(Neural Turing Machines, NTM)详细理解并附实现代码。
人工智能·python·rnn·深度学习·lstm·ntm
阿史大杯茶4 小时前
Codeforces Round 976 (Div. 2 ABCDE题)视频讲解
数据结构·c++·算法
LluckyYH5 小时前
代码随想录Day 58|拓扑排序、dijkstra算法精讲,题目:软件构建、参加科学大会
算法·深度优先·动态规划·软件构建·图论·dfs
转调5 小时前
每日一练:地下城游戏
开发语言·c++·算法·leetcode
SEU-WYL5 小时前
基于深度学习的任务序列中的快速适应
人工智能·深度学习