卡尔曼滤波EKF

目录

一、概述

二、卡尔曼滤波的5个公式

三、应用案例:汽车运动

四、应用案例:温度估计

五、总结


一、概述

初学者对于卡尔曼滤波5个公式有点懵,本文先接地气地介绍5个公式,然后举两个常用例子加强理解,同时附有Matlab代码。卡尔曼滤波在大学课程《现代控制理论》当中有涉及详细讲解。卡尔曼滤波使用条件有:

  • 1、线性系统;
  • 2、系统中噪声(不确定性)服从高斯分布。下文中的方差、误差、偏差、协方差都指不确定性的意思。误差 = 偏差;方差 = 偏差 ²。

在无人驾驶导航定位当中,需要多传感器对汽车位姿进行检测 ;在多传感器融合方面,使用卡尔曼滤波理论较多。对预测公式新的理解:第一个公式求解的是状态变量的期望值 。第二个公式求解的是状态变量的方差。

二、卡尔曼滤波的5个公式

以下内容有手写word,都是原创哈。

三、应用案例:汽车运动

完整的matlab代码:

Matlab 复制代码
clear all;
close all;
clc;
Z = (1:100); %观测值
noise = randn(1,100);%1行100列高斯白噪声
Z = Z + noise;

X = [0;0];%状态值
P = [1 0; 0 1];%状态协方差矩阵
F = [1 1; 0 1];%状态转移矩阵
Q = [0.0001, 0; 0 0.0001];%状态转移协方差矩阵
H = [1 0];%观测矩阵
R = 1;%观测噪声方差

figure;
%hold on;
speed = [];
distance = [];
for i =1:100
   %% 预测
   X_ = F*X;
   P_ = F*P*F' + Q;
   %% 更新
   K = P_*H'/(H*P_*H' + R);
   X = X_ + K*(Z(i) - H*X_);
   P = (eye(2) - K*H)*P_;

   speed(i) = X(2);
   distance(i) = X(1);
   %%plot(X(1), X(2));
end
plot(distance, speed);

四、应用案例:温度估计

五、总结

在线性高斯系统中,卡尔曼滤波器构成了该系统中的最大后验概率估计。而且,由于高斯分布经过线性变换后仍服从高斯分布,所以整个过程中我们没有进行任何的近似。可以说,卡尔曼滤波器构成了线性系统的最优无偏估计

SLAM 中的运动方程和观测方程通常是非线性函数,尤其是视觉 SLAM 中的相机模型,需要使用相机内参模型以及李代数表示的位姿,更不可能是一个线性系统。一个高斯分布,经过非线性变换后,往往不再是高斯分布,所以在非线性系统中,我们必须取一定的近似,将一个非高斯的分布近似成一个高斯分布。我们希望把卡尔曼滤波器的结果拓展到非线性系统中来,称为扩展卡尔曼滤波器(Ex-tended Kalman Filter,EKF)。通常的做法是,在某个点附近考虑运动方程以及观测方程的一阶泰勒展开,只保留一阶项,即线性的部分,然后按照线性系统进行推导。

EKF的局限性:

    1. 首先,滤波器方法在一定程度上假设了马尔可夫性,也就是 k 时刻的状态只与 k −1时刻相关,而与 k − 1 之前的状态和观测都无关(或者和前几个有限时间的状态相关)。这有点像是在视觉里程计中,只考虑相邻两帧关系一样。如果当前帧确实与很久之前的数据有关(例如回环),那么滤波器就会难以处理这种情况。而非线性优化方法则倾向于使用所有的历史数据。它不光考虑邻近时刻的特征点与轨迹关系,更会把考虑很久之前的状态也考虑进来,称为全体时间上的 SLAM(Full-SLAM)。在这种意义下,非线性优化方法使用了更多信息,当然也需要更多的计算。
  • 2.与第六章介绍的优化方法相比,EKF 滤波器仅在 k−1时刻相机位姿处做了一次线性化,然后就直接根据这次线性化结果,把后验概率给算了出来。这相当于在说,我们认为该点处的线性化近似,在后验概率处仍然是有效的。而实际上,当我们离开工作点较远的时候,一阶泰勒展开并不一定能够近似整个函数,这取决于运动模型和观测模型的非线性情况。如果它们有强烈的非线性,那线性近似就只在很小范围内成立,不能认为在很远的地方仍能用线性来近似。这就是 EKF 的非线性误差 ,是它的主要问题所在。在优化问题中,尽管我们也做一阶(最速下降)或二阶(G-N 或 L-M)的近似,但每迭代一次,状态估计发生改变之后,我们会重新对新的估计点做泰勒展开,而不像EKF 那样只在固定点上做一次泰勒展开。这就导致优化方法适用范围更广,则在状态变化较大时亦能适用。
  • 3.从程序实现上来说,EKF 需要存储状态量的均值和方差 ,并对它们进行维护和更新。如果把路标也放进状态的话,由于视觉 SLAM 中路标数量很大,这个存储量是相当可观的,且与状态量呈平方增长(因为要存储协方差矩阵)。因此,EKF SLAM 普遍认为不可适用于大型场景。
相关推荐
强盛小灵通专卖员8 分钟前
DL00291-联邦学习以去中心化锂离子电池健康预测模型完整实现
人工智能·机器学习·深度强化学习·核心期刊·导师·小论文·大论文
逆向菜鸟10 分钟前
【摧毁比特币】椭圆曲线象限细分求k-陈墨仙
python·算法
Hello123网站17 分钟前
多墨智能-AI一键生成工作文档/流程图/思维导图
人工智能·流程图·ai工具
DolphinDB18 分钟前
DolphinDB 回测插件快速上手
算法
才思喷涌的小书虫19 分钟前
小白玩转 DINO-X MCP(2):基于 DINO-X MCP 搭建饮食规划工作流
计算机视觉·mcp
利刃大大35 分钟前
【动态规划:路径问题】最小路径和 && 地下城游戏
算法·动态规划·cpp·路径问题
有Li1 小时前
CLIK-Diffusion:用于牙齿矫正的临床知识感知扩散模型|文献速递-深度学习人工智能医疗图像
人工智能·深度学习·文献·医学生
武大打工仔1 小时前
用 Java 复现哲学家就餐问题
算法
要做朋鱼燕1 小时前
【数据结构】用堆解决TOPK问题
数据结构·算法
大唐荣华1 小时前
视觉语言模型(VLA)分类方法体系
人工智能·分类·机器人·具身智能