第三章:人工智能深度学习教程-基础神经网络(第一节-ANN 和 BNN 的区别)

你有没有想过建造大脑之类的东西是什么感觉,这些东西是如何工作的,或者它们的作用是什么?让我们看看节点如何与神经元通信,以及人工神经网络和生物神经网络之间有什么区别。

1. 人工神经网络 人工神经网络(ANN)是一种基于前馈策略的神经网络。之所以这样称呼,是因为它们不断地通过节点传递信息,直到到达输出节点。这也被称为最简单的神经网络类型。ANN 的一些优点:

  • 无论数据类型如何(线性或非线性),都能够学习。

  • 人工神经网络具有高度波动性,最适合金融时间序列预测。

ANN 的一些缺点:

  • 最简单的架构很难解释网络的行为。

  • 该网络依赖于硬件。

**2.生物神经网络:**生物神经网络(BNN)是由突触、树突、细胞体和轴突组成的结构。在这个神经网络中,处理是由神经元进行的。树突接收来自其他神经元的信号,体细胞将所有输入信号相加,轴突将信号传输到其他细胞。

BNN 的一些优点:

  • 突触是输入处理元件。

  • 它能够处理高度复杂的并行输入。

BNN 的一些缺点:

  • 没有控制机制。

  • 处理速度很慢,因为它很复杂。

ANN 和 BNN 之间的区别:

生物神经网络(BNN)和人工神经网络(ANN)都由相似的基本组件组成,但它们之间也存在一些差异。

神经元: 在 BNN 和 ANN 中,神经元是处理和传输信息的基本构建块。然而,BNN 神经元比 ANN 更复杂、更多样化。在 BNN 中,神经元具有多个树突 ,接收来自多个源的输入,轴突将信号传输到其他神经元,而在 ANN 中,神经元被简化,通常只有一个输出。

**突触:**在 BNN 和 ANN 中,突触是神经元之间的连接点,信息在此处传输。然而,在ANN中,神经元之间的连接通常是固定的,连接的强度由一组权重决定,而在BNN中,神经元之间的连接更加灵活,连接的强度可以通过多种因素,包括学习和经验。

**神经通路:**在 BNN 和 ANN 中,神经通路是神经元之间的连接,允许信息在整个网络中传输。然而,在 BNN 中,神经通路高度复杂且多样,神经元之间的连接可以通过经验和学习来修改。在人工神经网络中,神经通路通常更简单,并且由网络架构预先确定。

|------|--------------------|-------------------|
| 参数 | 神经网络 | 神经网络 |
| 结构 | 输入 重量 输出 隐藏层 | 树突 突触 轴突 细胞体 |
| 学习 | 非常精确的结构和格式化数据 | 他们可以容忍歧义 |
| 处理器 | 复杂的 高速 一个或几个 | 简单的 低速 大数字 |
| 记忆 | 与处理器分离 本地化的 非内容可寻址 | 集成到处理器中 分散式 内容可寻址 |
| 计算 | 集中 顺序的 存储程序 | 分散式 平行线 自学 |
| 可靠性 | 非常脆弱 | 强壮的 |
| 专业知识 | 数字和符号 操纵 | 感性的 问题 |
| 操作环境 | 明确的 良好约束的 | 定义不清 无约束的 |
| 容错能力 | 容错潜力 | 即使部分损坏,性能也会下降 |

总体而言,虽然 BNN 和 ANN 共享许多基本组件,但它们在复杂性、灵活性和适应性方面存在显着差异。BNN 是高度复杂且适应性强的系统,可以并行处理信息,其可塑性使它们能够随着时间的推移进行学习和适应。相比之下,人工神经网络是更简单的系统,旨在执行特定任务,它们的连接通常是固定的,网络架构由设计者确定。

相关推荐
amhjdx2 小时前
星巽短剧以科技赋能影视创新,构建全球短剧新生态!
人工智能·科技
听风南巷2 小时前
机器人全身控制WBC理论及零空间原理解析(数学原理解析版)
人工智能·数学建模·机器人
美林数据Tempodata3 小时前
“双新”指引,AI驱动:工业数智应用生产性实践创新
大数据·人工智能·物联网·实践中心建设·金基地建设
电科_银尘3 小时前
【大语言模型】-- 私有化部署
人工智能·语言模型·自然语言处理
翔云 OCR API4 小时前
人工智能驱动下的OCR API技术演进与实践应用
人工智能·ocr
极客学术工坊5 小时前
2023年辽宁省数学建模竞赛-B题 数据驱动的水下导航适配区分类预测-基于支持向量机对水下导航适配区分类的研究
机器学习·支持向量机·数学建模·分类
南方者5 小时前
重磅升级!文心 ERNIE-5.0 新一代原生全模态大模型,这你都不认可它吗?!
人工智能·aigc
庄周迷蝴蝶5 小时前
旋转位置编码(Rotary Position Embedding,RoPE)
人工智能·机器学习
xier_ran5 小时前
深度学习:RMSprop 优化算法详解
人工智能·深度学习·算法
大千AI助手5 小时前
Prefix-Tuning:大语言模型的高效微调新范式
人工智能·神经网络·自然语言处理·llm·prefix-tuning·大千ai助手·前缀微调