多状态Dp问题——买卖股票的最佳时机含冷冻期

目录

一,题目

二,题目接口

三,解题思路及其代码


一,题目

给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。​

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

  • 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。

**注意:**你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

复制代码
输入: prices = [1,2,3,0,2]
输出: 3 
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

示例 2:

复制代码
输入: prices = [1]
输出: 0

二,题目接口

cpp 复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {

    }
};

三,解题思路及其代码

首先,要明确的一点便是这道题还是一个多状态的dp问题。在这样一道题里面,在每一天都会有三种状态:**1.**今天处于卖出状态。

**2.**今天处于买入状态。

**3.**今天处于冷冻期。

在明确好这些状态以后,便可以开始列举这几种状态间的转换关系了。

转换到卖出状态的情况:1.前一天处于买入状态,今天卖出股票。3.前一天处于卖出状态,这一天什么也不做。

转换到买入状态:1.前一天处于冷冻期状态,今天买入。2.前一天处于买入状态,今天啥也不做。

转换到冷冻期:1.前一天处于卖出状态。

画出状态转移图如下:

在推理完这些状态转移关系以后便可以推导出要求最大值的情况下的状态转移方程,设:f(i),g(i),x(i)分别是卖出状态,买入状态,冷冻期的最大利润。那便可以推导出如下的状态转移方程:

cpp 复制代码
 f[i] = max(x[i-1]-prices[i],f[i-1]);
 g[i] = max(f[i-1]+prices[i],g[i-1]);
 x[i] = g[i-1];

然后在完成初始化以后便可以写出这道题的动态规划解法了,代码如下:

cpp 复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        vector<int>f(n);
        auto g = f;
        auto x = f;

        f[0]= -prices[0];//初始化

        for(int i = 1;i<n;i++)
        {
            f[i] = max(x[i-1]-prices[i],f[i-1]);
            g[i] = max(f[i-1]+prices[i],g[i-1]);
            x[i] = g[i-1];
        }

        return max(x[n-1],g[n-1]);

    }
};

过啦!!!

相关推荐
使者大牙7 分钟前
【大语言模型学习笔记】第一篇:LLM大规模语言模型介绍
笔记·学习·语言模型
passer__jw76727 分钟前
【LeetCode】【算法】283. 移动零
数据结构·算法·leetcode
As977_29 分钟前
前端学习Day12 CSS盒子的定位(相对定位篇“附练习”)
前端·css·学习
ajsbxi32 分钟前
苍穹外卖学习记录
java·笔记·后端·学习·nginx·spring·servlet
Ocean☾33 分钟前
前端基础-html-注册界面
前端·算法·html
Rattenking33 分钟前
React 源码学习01 ---- React.Children.map 的实现与应用
javascript·学习·react.js
顶呱呱程序41 分钟前
2-143 基于matlab-GUI的脉冲响应不变法实现音频滤波功能
算法·matlab·音视频·matlab-gui·音频滤波·脉冲响应不变法
dsywws1 小时前
Linux学习笔记之时间日期和查找和解压缩指令
linux·笔记·学习
道法自然04021 小时前
Ethernet 系列(8)-- 基础学习::ARP
网络·学习·智能路由器
爱吃生蚝的于勒1 小时前
深入学习指针(5)!!!!!!!!!!!!!!!
c语言·开发语言·数据结构·学习·计算机网络·算法