【自然语言处理(NLP)实战】LSTM网络实现中文文本情感分析(手把手与教学超详细)

目录

引言:

1.所有文件展示:

1.中文停用词数据(hit_stopwords.txt)来源于:来源于:)

[2.其中data数据集为chinese_text_cnn-master.zip提取出的文件。点击链接进入github,点击Code、Download ZIP即可下载。](#2.其中data数据集为chinese_text_cnn-master.zip提取出的文件。点击链接进入github,点击Code、Download ZIP即可下载。)

2.安装依赖库:

3.数据预处理(data_set.py)::)

train.txt-去除停用词后的训练集文件:

[test.txt -去除停用词后的测试集文件:](#test.txt -去除停用词后的测试集文件:)

[4. 模型训练以及保存(main.py)](#4. 模型训练以及保存(main.py))

1.LSTM模型搭建:

[2.main.py代价展示 :](#2.main.py代价展示 :)

3.模型保存

4.训练结果

5.LSTM模型测试(test.py))

1.测试结果:

2.测试结果:

6.完整代码展示:

1.data_set.py

2.mian.py

3.test.py


引言:

在当今数字化时代,人们在社交媒体、评论平台以及各类在线交流中产生了海量的文本数据。这些数据蕴含着丰富的情感信息,从而成为了深入理解用户态度、市场趋势,甚至社会情绪的宝贵资源。自然语言处理(NLP)的发展为我们提供了强大的工具,使得对文本情感进行分析成为可能。在这个领域中,长短时记忆网络(LSTM)凭借其能够捕捉文本序列中长距离依赖关系的能力,成为了情感分析任务中的一项重要技术。

本篇博客将手把手地教你如何使用LSTM网络实现中文文本情感分析。我们将从数据预处理开始,逐步构建一个端到端的情感分析模型。通过详细的步骤和示例代码,深入了解如何处理中文文本数据、构建LSTM模型、进行训练和评估。

1.所有文件展示:

1.中文停用词数据(hit_stopwords.txt)来源于:

项目目录预览 - stopwords - GitCode

2.其中data数据集chinese_text_cnn-master.zip提取出的文件。点击链接进入github,点击Code、Download ZIP即可下载。

2.安装依赖库:

bash 复制代码
pip install torch # 搭建LSTM模型
pip install gensim # 中文文本词向量转换
pip install numpy # 数据清洗、预处理
pip install pandas

3.数据预处理(data_set.py):

python 复制代码
# -*- coding: utf-8 -*-
# @Time : 2023/11/15 10:52
# @Author :Muzi
# @File : data_set.py
# @Software: PyCharm
import pandas as pd
import jieba


# 数据读取
def load_tsv(file_path):
    data = pd.read_csv(file_path, sep='\t')
    data_x = data.iloc[:, -1]
    data_y = data.iloc[:, 1]
    return data_x, data_y

train_x, train_y = load_tsv("./data/train.tsv")
test_x, test_y = load_tsv("./data/test.tsv")
train_x=[list(jieba.cut(x)) for x in train_x]
test_x=[list(jieba.cut(x)) for x in test_x]

with open('./hit_stopwords.txt','r',encoding='UTF8') as f:
    stop_words=[word.strip() for word in f.readlines()]
    print('Successfully')
def drop_stopword(datas):
    for data in datas:
        for word in data:
            if word in stop_words:
                data.remove(word)
    return datas

def save_data(datax,path):
    with open(path, 'w', encoding="UTF8") as f:
        for lines in datax:
            for i, line in enumerate(lines):
                f.write(str(line))
                # 如果不是最后一行,就添加一个逗号
                if i != len(lines) - 1:
                    f.write(',')
            f.write('\n')

if __name__ == '__main':
    train_x=drop_stopword(train_x)
    test_x=drop_stopword(test_x)

    save_data(train_x,'./train.txt')
    save_data(test_x,'./test.txt')
    print('Successfully')

train.txt-去除停用词后的训练集文件:

test.txt -去除停用词后的测试集文件:

4. 模型训练以及保存(main.py)

1.LSTM模型搭建:

不同的数据集应该有不同的分类标准,我这里用到的数据模型属于二分类问题

python 复制代码
# 定义LSTM模型
class LSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        lstm_out, _ = self.lstm(x)
        output = self.fc(lstm_out[:, -1, :])  # 取序列的最后一个输出
        return output

# 定义模型
input_size = word2vec_model.vector_size
hidden_size = 50  # 你可以根据需要调整隐藏层大小
output_size = 2  # 输出的大小,根据你的任务而定

model = LSTMModel(input_size, hidden_size, output_size)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = torch.optim.Adam(model.parameters(), lr=0.0002)

2.main.py代价展示 :

python 复制代码
# -*- coding: utf-8 -*-
# @Time : 2023/11/13 20:31
# @Author :Muzi
# @File : mian.py.py
# @Software: PyCharm
import pandas as pd
import torch
from torch import nn
import jieba
from gensim.models import Word2Vec
import numpy as np
from data_set import load_tsv
from torch.utils.data import DataLoader, TensorDataset


# 数据读取
def load_txt(path):
    with open(path,'r',encoding='utf-8') as f:
        data=[[line.strip()] for line in f.readlines()]
        return data

train_x=load_txt('train.txt')
test_x=load_txt('test.txt')
train=train_x+test_x
X_all=[i for x in train for i in x]

_, train_y = load_tsv("./data/train.tsv")
_, test_y = load_tsv("./data/test.tsv")
# 训练Word2Vec模型
word2vec_model = Word2Vec(sentences=X_all, vector_size=100, window=5, min_count=1, workers=4)

# 将文本转换为Word2Vec向量表示
def text_to_vector(text):
    vector = [word2vec_model.wv[word] for word in text if word in word2vec_model.wv]
    return sum(vector) / len(vector) if vector else [0] * word2vec_model.vector_size

X_train_w2v = [[text_to_vector(text)] for line in train_x for text in line]
X_test_w2v = [[text_to_vector(text)] for line in test_x for text in line]

# 将词向量转换为PyTorch张量
X_train_array = np.array(X_train_w2v, dtype=np.float32)
X_train_tensor = torch.Tensor(X_train_array)
X_test_array = np.array(X_test_w2v, dtype=np.float32)
X_test_tensor = torch.Tensor(X_test_array)
#使用DataLoader打包文件
train_dataset = TensorDataset(X_train_tensor, torch.LongTensor(train_y))
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_dataset = TensorDataset(X_test_tensor,torch.LongTensor(test_y))
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=True)
# 定义LSTM模型
class LSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        lstm_out, _ = self.lstm(x)
        output = self.fc(lstm_out[:, -1, :])  # 取序列的最后一个输出
        return output

# 定义模型
input_size = word2vec_model.vector_size
hidden_size = 50  # 你可以根据需要调整隐藏层大小
output_size = 2  # 输出的大小,根据你的任务而定

model = LSTMModel(input_size, hidden_size, output_size)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = torch.optim.Adam(model.parameters(), lr=0.0002)

if __name__ == "__main__":
    # 训练模型
    num_epochs = 10
    log_interval = 100  # 每隔100个批次输出一次日志
    loss_min=100
    for epoch in range(num_epochs):
        model.train()
        for batch_idx, (data, target) in enumerate(train_loader):
            outputs = model(data)
            loss = criterion(outputs, target)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if batch_idx % log_interval == 0:
                print('Epoch [{}/{}], Batch [{}/{}], Loss: {:.4f}'.format(
                    epoch + 1, num_epochs, batch_idx, len(train_loader), loss.item()))
            # 保存最佳模型
            if loss.item()<loss_min:
                loss_min=loss.item()
                torch.save(model, 'model.pth')

    # 模型评估
    with torch.no_grad():
        model.eval()
        correct = 0
        total = 0
        for data, target in test_loader:
            outputs = model(data)
            _, predicted = torch.max(outputs.data, 1)
            total += target.size(0)
            correct += (predicted == target).sum().item()

        accuracy = correct / total
        print('Test Accuracy: {:.2%}'.format(accuracy))

3.模型保存

python 复制代码
 # 保存最佳模型
            if loss.item()<loss_min:
                loss_min=loss.item()
                torch.save(model, 'model.pth')

4.训练结果

5.LSTM模型测试(test.py)

python 复制代码
# -*- coding: utf-8 -*-
# @Time : 2023/11/15 15:53
# @Author :Muzi
# @File : test.py.py
# @Software: PyCharm
import torch
import jieba
from torch import nn
from gensim.models import Word2Vec
import numpy as np

class LSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        lstm_out, _ = self.lstm(x)
        output = self.fc(lstm_out[:, -1, :])  # 取序列的最后一个输出
        return output

# 数据读取
def load_txt(path):
    with open(path,'r',encoding='utf-8') as f:
        data=[[line.strip()] for line in f.readlines()]
        return data

#去停用词
def drop_stopword(datas):
    # 假设你有一个函数用于预处理文本数据
    with open('./hit_stopwords.txt', 'r', encoding='UTF8') as f:
        stop_words = [word.strip() for word in f.readlines()]
    datas=[x for x in datas if x not in stop_words]
    return datas

def preprocess_text(text):
    text=list(jieba.cut(text))
    text=drop_stopword(text)
    return text

# 将文本转换为Word2Vec向量表示
def text_to_vector(text):
    train_x = load_txt('train.txt')
    test_x = load_txt('test.txt')
    train = train_x + test_x
    X_all = [i for x in train for i in x]
    # 训练Word2Vec模型
    word2vec_model = Word2Vec(sentences=X_all, vector_size=100, window=5, min_count=1, workers=4)
    vector = [word2vec_model.wv[word] for word in text if word in word2vec_model.wv]
    return sum(vector) / len(vector) if vector else [0] * word2vec_model.vector_size

if __name__ == '__main__':
    # input_text = "这个车完全就是垃圾,又热又耗油"
    input_text = "这个车我开了好几年,还是不错的"
    label = {1: "正面情绪", 0: "负面情绪"}
    model = torch.load('model.pth')
    # 预处理输入数据
    input_data = preprocess_text(input_text)
    # 确保输入词向量与模型维度和数据类型相同
    input_data=[[text_to_vector(input_data)]]
    input_arry= np.array(input_data, dtype=np.float32)
    input_tensor = torch.Tensor(input_arry)
    # 将输入数据传入模型
    with torch.no_grad():
        output = model(input_tensor)
    predicted_class = label[torch.argmax(output).item()]
    print(f"predicted_text:{input_text}")
    print(f"模型预测的类别: {predicted_class}")

1.测试结果:

2.测试结果:

6.完整代码展示:

1.data_set.py

python 复制代码
import pandas as pd
import jieba

# 数据读取
def load_tsv(file_path):
    data = pd.read_csv(file_path, sep='\t')
    data_x = data.iloc[:, -1]
    data_y = data.iloc[:, 1]
    return data_x, data_y

with open('./hit_stopwords.txt','r',encoding='UTF8') as f:
    stop_words=[word.strip() for word in f.readlines()]
    print('Successfully')
def drop_stopword(datas):
    for data in datas:
        for word in data:
            if word in stop_words:
                data.remove(word)
    return datas

def save_data(datax,path):
    with open(path, 'w', encoding="UTF8") as f:
        for lines in datax:
            for i, line in enumerate(lines):
                f.write(str(line))
                # 如果不是最后一行,就添加一个逗号
                if i != len(lines) - 1:
                    f.write(',')
            f.write('\n')

if __name__ == '__main':
    train_x, train_y = load_tsv("./data/train.tsv")
    test_x, test_y = load_tsv("./data/test.tsv")
    train_x = [list(jieba.cut(x)) for x in train_x]
    test_x = [list(jieba.cut(x)) for x in test_x]
    train_x=drop_stopword(train_x)
    test_x=drop_stopword(test_x)
    save_data(train_x,'./train.txt')
    save_data(test_x,'./test.txt')
    print('Successfully')

2.mian.py

python 复制代码
import pandas as pd
import torch
from torch import nn
import jieba
from gensim.models import Word2Vec
import numpy as np
from data_set import load_tsv
from torch.utils.data import DataLoader, TensorDataset


# 数据读取
def load_txt(path):
    with open(path,'r',encoding='utf-8') as f:
        data=[[line.strip()] for line in f.readlines()]
        return data

train_x=load_txt('train.txt')
test_x=load_txt('test.txt')
train=train_x+test_x
X_all=[i for x in train for i in x]

_, train_y = load_tsv("./data/train.tsv")
_, test_y = load_tsv("./data/test.tsv")
# 训练Word2Vec模型
word2vec_model = Word2Vec(sentences=X_all, vector_size=100, window=5, min_count=1, workers=4)

# 将文本转换为Word2Vec向量表示
def text_to_vector(text):
    vector = [word2vec_model.wv[word] for word in text if word in word2vec_model.wv]
    return sum(vector) / len(vector) if vector else [0] * word2vec_model.vector_size

X_train_w2v = [[text_to_vector(text)] for line in train_x for text in line]
X_test_w2v = [[text_to_vector(text)] for line in test_x for text in line]

# 将词向量转换为PyTorch张量
X_train_array = np.array(X_train_w2v, dtype=np.float32)
X_train_tensor = torch.Tensor(X_train_array)
X_test_array = np.array(X_test_w2v, dtype=np.float32)
X_test_tensor = torch.Tensor(X_test_array)
#使用DataLoader打包文件
train_dataset = TensorDataset(X_train_tensor, torch.LongTensor(train_y))
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_dataset = TensorDataset(X_test_tensor,torch.LongTensor(test_y))
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=True)
# 定义LSTM模型
class LSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        lstm_out, _ = self.lstm(x)
        output = self.fc(lstm_out[:, -1, :])  # 取序列的最后一个输出
        return output

# 定义模型
input_size = word2vec_model.vector_size
hidden_size = 50  # 你可以根据需要调整隐藏层大小
output_size = 2  # 输出的大小,根据你的任务而定

model = LSTMModel(input_size, hidden_size, output_size)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = torch.optim.Adam(model.parameters(), lr=0.0002)

if __name__ == "__main__":
    # 训练模型
    num_epochs = 10
    log_interval = 100  # 每隔100个批次输出一次日志
    loss_min=100
    for epoch in range(num_epochs):
        model.train()
        for batch_idx, (data, target) in enumerate(train_loader):
            outputs = model(data)
            loss = criterion(outputs, target)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if batch_idx % log_interval == 0:
                print('Epoch [{}/{}], Batch [{}/{}], Loss: {:.4f}'.format(
                    epoch + 1, num_epochs, batch_idx, len(train_loader), loss.item()))
            # 保存最佳模型
            if loss.item()<loss_min:
                loss_min=loss.item()
                torch.save(model, 'model.pth')

    # 模型评估
    with torch.no_grad():
        model.eval()
        correct = 0
        total = 0
        for data, target in test_loader:
            outputs = model(data)
            _, predicted = torch.max(outputs.data, 1)
            total += target.size(0)
            correct += (predicted == target).sum().item()

        accuracy = correct / total
        print('Test Accuracy: {:.2%}'.format(accuracy))

3.test.py

python 复制代码
import torch
import jieba
from torch import nn
from gensim.models import Word2Vec
import numpy as np

class LSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        lstm_out, _ = self.lstm(x)
        output = self.fc(lstm_out[:, -1, :])  # 取序列的最后一个输出
        return output

# 数据读取
def load_txt(path):
    with open(path,'r',encoding='utf-8') as f:
        data=[[line.strip()] for line in f.readlines()]
        return data

#去停用词
def drop_stopword(datas):
    # 假设你有一个函数用于预处理文本数据
    with open('./hit_stopwords.txt', 'r', encoding='UTF8') as f:
        stop_words = [word.strip() for word in f.readlines()]
    datas=[x for x in datas if x not in stop_words]
    return datas

def preprocess_text(text):
    text=list(jieba.cut(text))
    text=drop_stopword(text)
    return text

# 将文本转换为Word2Vec向量表示
def text_to_vector(text):
    train_x = load_txt('train.txt')
    test_x = load_txt('test.txt')
    train = train_x + test_x
    X_all = [i for x in train for i in x]
    # 训练Word2Vec模型
    word2vec_model = Word2Vec(sentences=X_all, vector_size=100, window=5, min_count=1, workers=4)
    vector = [word2vec_model.wv[word] for word in text if word in word2vec_model.wv]
    return sum(vector) / len(vector) if vector else [0] * word2vec_model.vector_size

if __name__ == '__main__':
    input_text = "这个车完全就是垃圾,又热又耗油"
    # input_text = "这个车我开了好几年,还是不错的"
    label = {1: "正面情绪", 0: "负面情绪"}
    model = torch.load('model.pth')
    # 预处理输入数据
    input_data = preprocess_text(input_text)
    # 确保输入词向量与模型维度和数据类型相同
    input_data=[[text_to_vector(input_data)]]
    input_arry= np.array(input_data, dtype=np.float32)
    input_tensor = torch.Tensor(input_arry)
    # 将输入数据传入模型
    with torch.no_grad():
        output = model(input_tensor)
    # 这里只一个简单的示例
    predicted_class = label[torch.argmax(output).item()]
    print(f"predicted_text:{input_text}")
    print(f"模型预测的类别: {predicted_class}")
相关推荐
如若123几秒前
对文件内的文件名生成目录,方便查阅
java·前端·python
西猫雷婶30 分钟前
python学opencv|读取图像(二十一)使用cv2.circle()绘制圆形进阶
开发语言·python·opencv
老刘莱国瑞1 小时前
STM32 与 AS608 指纹模块的调试与应用
python·物联网·阿里云
湫ccc1 小时前
《Opencv》基础操作详解(3)
人工智能·opencv·计算机视觉
Jack_pirate1 小时前
深度学习中的特征到底是什么?
人工智能·深度学习
微凉的衣柜2 小时前
微软在AI时代的战略布局和挑战
人工智能·深度学习·microsoft
GocNeverGiveUp2 小时前
机器学习1-简单神经网络
人工智能·机器学习
Schwertlilien2 小时前
图像处理-Ch2-空间域的图像增强
人工智能
一只敲代码的猪2 小时前
Llama 3 模型系列解析(一)
大数据·python·llama
智慧化智能化数字化方案2 小时前
深入解读数据资产化实践指南(2024年)
大数据·人工智能·数据资产管理·数据资产入表·数据资产化实践指南