EMG肌肉信号处理合集 (一)

本文归纳了常见的肌肉信号预处理流程,方便EMG信号的后续分析。使用pyemgpipeline库 来进行信号的处理。文中使用了 UC Irvine 数据库的下肢数据。

目录

[1 使用wrappers 定义数据类,来进行后续的操作](#1 使用wrappers 定义数据类,来进行后续的操作)

[2 肌电信号DC偏置去除](#2 肌电信号DC偏置去除)

[3 带通滤波器处理](#3 带通滤波器处理)

[4 对肌电信号进行全波整流](#4 对肌电信号进行全波整流)

[5 肌电信号线性包络](#5 肌电信号线性包络)

[6 幅度归一化 (已知最大收缩的幅度)](#6 幅度归一化 (已知最大收缩的幅度))

[7 分割得到一部分时间段的信号](#7 分割得到一部分时间段的信号)

[8 得到最后处理好的数据并且保存下来](#8 得到最后处理好的数据并且保存下来)


1 使用wrappers 定义数据类,来进行后续的操作

python 复制代码
import os
import numpy as np
from matplotlib.figure import SubplotParams
import pyemgpipeline as pep


data_folder = 'uci_lower_limb/A_TXT'
data_filename = '3Asen.txt'
trial_name = 'Sit'
channel_names = ['rectus femoris', 'biceps femoris', 'vastus internus', 'semitendinosus']
sample_rate = 1000




def load_uci_lower_limb_txt(_filepath):
    with open(_filepath) as fp:
        collect_values = np.array([])
        lines = fp.readlines()
        for line in lines[7:]:  # first few lines are data description
            items = [float(e) for e in line.split('\t')[:4] if e != '']  # last column is not EMG data
            if len(items) != 4:  # last few rows might not have EMG data
                continue
            collect_values = np.concatenate((collect_values, np.array(items)))
    _data = collect_values.reshape(-1, 4)
    return _data

filepath = os.path.join(data_folder, data_filename)
data = load_uci_lower_limb_txt(filepath)
data


print('data shape:', data.shape)



emg_plot_params = pep.plots.EMGPlotParams(
    n_rows=4,
    fig_kwargs={
        'figsize': (8, 6),
        'dpi': 80,
        'subplotpars': SubplotParams(wspace=0, hspace=0.6),
    },
    line2d_kwargs={
        'color': 'red',
    }
)



m = pep.wrappers.EMGMeasurement(data, hz=sample_rate, trial_name=trial_name,
                                channel_names=channel_names, emg_plot_params=emg_plot_params)


m.plot()

原始肌电信号

2 肌电信号DC偏置去除

python 复制代码
m.apply_dc_offset_remover()
m.plot()

DC偏置去除的结果图

3 带通滤波器处理

python 复制代码
m.apply_bandpass_filter(bf_order=4, bf_cutoff_fq_lo=10, bf_cutoff_fq_hi=450)
m.plot()

带通滤波器处理的结果图

4 对肌电信号进行全波整流

python 复制代码
m.apply_full_wave_rectifier()
m.plot()

全波整流处理肌电信号

5 肌电信号线性包络

python 复制代码
m.apply_linear_envelope(le_order=4, le_cutoff_fq=6)
m.plot()

肌电信号线性包络处理

6 幅度归一化 (已知最大收缩的幅度)

python 复制代码
max_amplitude = [0.043, 0.069, 0.364, 0.068]  # assume the MVC is known
m.apply_amplitude_normalizer(max_amplitude)
m.plot()

幅度归一化结果

7 分割得到一部分时间段的信号

python 复制代码
m.apply_segmenter(20.5, 29.5)
m.plot()

分割结果

8 得到最后处理好的数据并且保存下来

python 复制代码
m.data

m.timestamp


m.export_csv('ex1_processed.csv')
相关推荐
九年义务漏网鲨鱼29 分钟前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间1 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享1 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾1 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码1 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5892 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
nananaij2 小时前
【Python进阶篇 面向对象程序设计(3) 继承】
开发语言·python·神经网络·pycharm
雷羿 LexChien2 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松2 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能
heart000_12 小时前
128K 长文本处理实战:腾讯混元 + 云函数 SCF 构建 PDF 摘要生成器
人工智能·自然语言处理·pdf