Why OTA ?

Even in conventional technologies (e.g, UMTS, LTE), sometimes we performed OTA measurement especially for TRP or TIS measurement. However, in 5G/NR we are talking about OTA with almost every test, even with protocol test. Why OTA has become such a big issue in 5G/NR ? In NR, there are roughly two separated spectrum that are specified in 3GPP specification. One is FR1 (sub 6 Ghz) and the other is FR2(mmWave). In FR1, we may continue to go with the conductive testing as we do with 2G/3G/4G technology. However, in FR2 it is highly likely that we are forced to go with OTA. Why ?

We can think of several reasons for this and with a few different aspect.

  • Complexity : In FR2, it is almost sure that we will use some type of array antenna (called Massive MIMO). It means you will have a lot of antenna on the device. If you want to go with conductive testing, the connection would goes like (B) shown below, whereas you can do test as in (A) if you go with OTA. Then, it would be obvious on why we want to go with (A). NOTE : If you want to ask why we need to use an Antenna Array, Motivation of Massive MIMO page would give you some insight.
  • Not Enough Space : Let's assume that you have enough reason to go with OTA despite the complexity of cable connection, you would still face another serious issue. Even though many of the antenna element (e.g, 16, 32, 64 etc) in your antenna array, the whole size of the antenna module would not be large enough at mmWave frequencies to accommodate all the cable connectors.
  • Cost : Now let's assume that you have really, really serious reason to go with conductive (like B) despite all the complexity and space issue. Even in this situation, there is other problem with conductive test. In most of conventional test, you might have used low cost SMA connectors and cables. However, you would not get the accurate measurement with SMA type of connector / cables in mmWave. You would need K connector or even more special connectors and cables (e.g, V connectors) if the freuqency goes even higher. These types of special connectors and cables cost much higher than those SMA types. If we need to use very high frequencies (like over 60 Ghz) in the future, you may need to spend in just for connectors and cables almost as much money as a low cost equipment price.
  • Physical Nature of the Measurement : Even when you overcome all the issues described above, there is certain types of measurement that requires OTA because of the nature of the measurement itself. For example, if you want to detect the direction of the beam formed by the antenna array, you must rely on OTA measurement. You may say that you can still do this by conductive test. Theoretically, you can bring all the signals from each of antenna element path down to baseband and figure out beam direction (and other nature of the beam) by baseband processing. Of course, theoretically this is possible. But I am 100% sure that you want to avoid doing this if there is a relatively easy way like OTA test.

|---------------------------------------------------------------------------------------------------|
| (A) |
| |
| (B) |
| |

相关推荐
逼子格19 小时前
共射级放大电路的频率响应Multisim电路仿真——硬件工程师笔记
单片机·嵌入式硬件·硬件工程·硬件工程师·硬件工程师真题·multisim电路仿真·共射级放大电路
无情的8861 天前
电流驱动和电压驱动的区别
单片机·嵌入式硬件·硬件工程
逼子格2 天前
权电阻网络DAC实现电压输出型数模转换Multisim电路仿真——硬件工程师笔记
笔记·嵌入式硬件·硬件工程·硬件工程师·adc·硬件工程师真题·权电阻网络dac
逼子格4 天前
滤波电路Multisim电路仿真实验汇总——硬件工程师笔记
笔记·嵌入式硬件·硬件工程·硬件工程师·硬件工程师真题·multisim电路仿真·滤波电路
MARIN_shen5 天前
Marin说PCB之Allegro高亮BOM器件技巧详解
单片机·嵌入式硬件·硬件工程·pcb工艺
日晨难再5 天前
Genus:设计信息结构以及导航方式(路径种类)
硬件工程·数字ic
狄加山6756 天前
Cadence模块复用
服务器·硬件架构·硬件工程·信号处理·智能硬件
逼子格6 天前
开关电源和线性电源Multisim电路仿真实验汇总——硬件工程师笔记
嵌入式硬件·硬件工程·硬件工程师·开关电源·multisim电路仿真·稳压电源·线性电源
逼子格6 天前
振荡电路Multisim电路仿真实验汇总——硬件工程师笔记
笔记·嵌入式硬件·硬件工程·硬件工程师·硬件工程师真题·multisim电路仿真·震荡电流
国科安芯12 天前
【AS32系列MCU调试教程】SPI调试的常见问题解析
单片机·嵌入式硬件·性能优化·硬件架构·硬件工程