Why OTA ?

Even in conventional technologies (e.g, UMTS, LTE), sometimes we performed OTA measurement especially for TRP or TIS measurement. However, in 5G/NR we are talking about OTA with almost every test, even with protocol test. Why OTA has become such a big issue in 5G/NR ? In NR, there are roughly two separated spectrum that are specified in 3GPP specification. One is FR1 (sub 6 Ghz) and the other is FR2(mmWave). In FR1, we may continue to go with the conductive testing as we do with 2G/3G/4G technology. However, in FR2 it is highly likely that we are forced to go with OTA. Why ?

We can think of several reasons for this and with a few different aspect.

  • Complexity : In FR2, it is almost sure that we will use some type of array antenna (called Massive MIMO). It means you will have a lot of antenna on the device. If you want to go with conductive testing, the connection would goes like (B) shown below, whereas you can do test as in (A) if you go with OTA. Then, it would be obvious on why we want to go with (A). NOTE : If you want to ask why we need to use an Antenna Array, Motivation of Massive MIMO page would give you some insight.
  • Not Enough Space : Let's assume that you have enough reason to go with OTA despite the complexity of cable connection, you would still face another serious issue. Even though many of the antenna element (e.g, 16, 32, 64 etc) in your antenna array, the whole size of the antenna module would not be large enough at mmWave frequencies to accommodate all the cable connectors.
  • Cost : Now let's assume that you have really, really serious reason to go with conductive (like B) despite all the complexity and space issue. Even in this situation, there is other problem with conductive test. In most of conventional test, you might have used low cost SMA connectors and cables. However, you would not get the accurate measurement with SMA type of connector / cables in mmWave. You would need K connector or even more special connectors and cables (e.g, V connectors) if the freuqency goes even higher. These types of special connectors and cables cost much higher than those SMA types. If we need to use very high frequencies (like over 60 Ghz) in the future, you may need to spend in just for connectors and cables almost as much money as a low cost equipment price.
  • Physical Nature of the Measurement : Even when you overcome all the issues described above, there is certain types of measurement that requires OTA because of the nature of the measurement itself. For example, if you want to detect the direction of the beam formed by the antenna array, you must rely on OTA measurement. You may say that you can still do this by conductive test. Theoretically, you can bring all the signals from each of antenna element path down to baseband and figure out beam direction (and other nature of the beam) by baseband processing. Of course, theoretically this is possible. But I am 100% sure that you want to avoid doing this if there is a relatively easy way like OTA test.

|---------------------------------------------------------------------------------------------------|
| (A) |
| |
| (B) |
| |

相关推荐
渡我白衣1 小时前
计算机组成原理(9):零拓展与符号拓展
c语言·汇编·人工智能·嵌入式硬件·网络协议·硬件工程·c
无情的88618 小时前
硬件中的端接设计
fpga开发·硬件工程
恒锐丰小吕1 天前
矽塔 SA8812 1.6A、8.2-40V 双H桥电机驱动器技术解析
嵌入式硬件·硬件工程
czhaii1 天前
FX3U 32 MT 24MT 端子排列 接线图 软元件和指令说明
硬件工程
Aaron15883 天前
基于RFSOC+VU13P+GPU架构在雷达电子战的技术
人工智能·算法·fpga开发·架构·硬件工程·信号处理·基带工程
罗汉松(山水白河)3 天前
显卡接口:VGA、DVI、HDMI、DP
硬件工程·接口·显卡·显示
渡我白衣3 天前
计算机组成原理(7):定点数的编码表示
汇编·人工智能·嵌入式硬件·网络协议·机器学习·硬件工程
weixin_478796343 天前
航空接头.
智能手机·硬件工程·射频工程
hcoolabc4 天前
【GNURADIO】环境安装A
硬件工程
星星泡饭2924 天前
极端环境生存指南——针对极寒、高海拔及强震动环境的连接件选型与合规评估
自动化·硬件工程·制造