【Paper List】Multi-modal Few-shot Sentiment Analysis

综述

Multimodal Sentiment Analysis: A Survey of Methods, Trends, and Challenges

paper link: https://dl.acm.org/doi/abs/10.1145/3586075

2023

  1. Few-shot Multimodal Sentiment Analysis Based on Multimodal Probabilistic Fusion Prompts
    paper link: https://dl.acm.org/doi/pdf/10.1145/3581783.3612181
    code link: https://github.com/YangXiaocui1215/MultiPoint
  2. Few-shot Joint Multimodal Aspect-Sentiment Analysis Based on Generative Multimodal Prompt
    paper link: https://arxiv.org/abs/2305.10169
    code link: https://github.com/yangxiaocui1215/gmp
  3. Syntax-aware Hybrid prompt model for Few-shot multi-modal sentiment analysis
    paper link: https://arxiv.org/abs/2306.01312

2022

  1. Few-Shot Multi-Modal Sentiment Analysis with Prompt-Based Vision-Aware Language Modeling
    paper link: https://ieeexplore.ieee.org/abstract/document/9859654
    code link: https://github.com/yynj98/PVLM
  2. Unified Multi-modal Pre-training for Few-shot Sentiment Analysis with Prompt-based Learning
    paper link: https://dl.acm.org/doi/abs/10.1145/3503161.3548306
    code link: https://github.com/yynj98/UP-MPF
  3. CLMLF:A Contrastive Learning and Multi-Layer Fusion Method for Multimodal Sentiment Detection
    paper link: https://arxiv.org/abs/2204.05515
    code link: https://github.com/link-li/clmlf

2021

  1. Multimodal Few-Shot Learning with Frozen Language Models
    paper link: https://arxiv.org/abs/2106.13884
    code link: https://github.com/ilkerkesen/frozen
相关推荐
我不是小upper1 小时前
anaconda、conda、pip、pytorch、torch、tensorflow到底是什么?它们之间有何联系与区别?
人工智能·pytorch·深度学习·conda·tensorflow·pip
z樾1 小时前
Sum-rate计算
开发语言·python·深度学习
zzywxc7872 小时前
在处理大数据列表渲染时,React 虚拟列表是提升性能的关键技术,但在实际实现中常遇到渲染抖动和滚动定位偏移等问题。
前端·javascript·人工智能·深度学习·react.js·重构·ecmascript
zhongqu_3dnest2 小时前
VR 三维重建:开启沉浸式体验新时代
人工智能·计算机视觉
美狐美颜sdk2 小时前
直播平台中的美白滤镜实现:美颜SDK的核心架构与性能优化指南
人工智能·深度学习·计算机视觉·美颜sdk·第三方美颜sdk·视频美颜sdk·美颜api
音视频牛哥2 小时前
智能平台的感知进化:AI × 视频通感在群体终端协同中的应用探索
人工智能·计算机视觉·音视频开发
Monkey-旭9 小时前
Android Bitmap 完全指南:从基础到高级优化
android·java·人工智能·计算机视觉·kotlin·位图·bitmap
老鱼说AI10 小时前
循环神经网络RNN原理精讲,详细举例!
人工智能·rnn·深度学习·神经网络·自然语言处理·语音识别
爱分享的飘哥12 小时前
第三十篇:AI的“思考引擎”:神经网络、损失与优化器的核心机制【总结前面2】
人工智能·深度学习·神经网络·优化器·损失函数·mlp·训练循环