假设检验(三)(单侧假设检验)

《假设检验(二)(正态总体参数的假设检验)》中我们讨论了形如 H 0 : θ = θ 0 ↔ H 1 : θ ≠ θ 0 H_0:\theta=\theta_0 \leftrightarrow H_1:\theta \neq \theta_0 H0:θ=θ0↔H1:θ=θ0 的假设检验问题,其中原假设 H 0 H_0 H0 为简单假设,备择假设 H 1 H_1 H1 所表示的参数区域在 H 0 H_0 H0 的参数区域的两侧,因而这样的假设称为双侧假设双边假设

在实际问题中,有时会遇到形如 H 0 : θ ≤ θ 0 ↔ H 1 : θ > θ 0 H_0:\theta\le\theta_0 \leftrightarrow H_1:\theta > \theta_0 H0:θ≤θ0↔H1:θ>θ0、 H 0 : θ ≥ θ 0 ↔ H 1 : θ < θ 0 H_0:\theta \ge \theta_0 \leftrightarrow H_1:\theta < \theta_0 H0:θ≥θ0↔H1:θ<θ0 等等的假设。在这些假设中,备择假设 H 1 H_1 H1 所表示的参数区域在 H 0 H_0 H0 的参数区域的一侧,因而这样的假设称为单侧假设单边假设


例:设 X 1 , . . . , X n X_1,...,X_n X1,...,Xn 为正态总体 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) 的样本, μ , σ 2 \mu, \sigma^2 μ,σ2 均未知,要检验
H 0 : μ = μ 0 ↔ H 1 : μ > μ 0 H_0:\mu=\mu_0 \leftrightarrow H_1:\mu > \mu_0 H0:μ=μ0↔H1:μ>μ0 取 T = n ( X ˉ − μ 0 ) S ∗ T=\frac{\sqrt{n}(\bar{X}-\mu_0)}{S^*} T=S∗n (Xˉ−μ0) 作为检验统计量。当 H 0 H_0 H0 成立时,一方面, T ∼ t ( n − 1 ) T \sim t(n-1) T∼t(n−1),另一方面, T T T 的取值应在 0 附近,即 T T T 取过分大的正值将不利于 H 0 H_0 H0,因而 H 0 H_0 H0 的拒绝域应取 W = { T ≥ k } W=\{T \ge k\} W={T≥k} 的形式。

对给定的水平 α \alpha α,查 t ( n − 1 ) t(n-1) t(n−1) 分布表,得 k = t α ( n − 1 ) k=t_\alpha(n-1) k=tα(n−1),使得 P { T ≥ t α ( n − 1 ) } = α P\{T \ge t_\alpha(n-1)\}=\alpha P{T≥tα(n−1)}=α,故得 H 0 H_0 H0 的拒绝域为
W = { T ≥ t α ( n − 1 ) } W=\{T \ge t_\alpha(n-1)\} W={T≥tα(n−1)}


例:设 X 1 , . . . , X n X_1,...,X_n X1,...,Xn 为正态总体 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) 的样本, μ , σ 2 \mu, \sigma^2 μ,σ2 均未知,要检验
H 0 : μ ≤ μ 0 ↔ H 1 : μ > μ 0 H_0:\mu \le \mu_0 \leftrightarrow H_1:\mu > \mu_0 H0:μ≤μ0↔H1:μ>μ0 仍取 T = n ( X ˉ − μ 0 ) S ∗ T=\frac{\sqrt{n}(\bar{X}-\mu_0)}{S^*} T=S∗n (Xˉ−μ0) 作为检验统计量。当 H 0 H_0 H0 成立时, T T T 应偏向取负值,即 T T T 取过分大得正值将不利于 H 0 H_0 H0,因而 H 0 H_0 H0 的拒绝域应取 W = { T ≥ k } W=\{T \ge k\} W={T≥k} 的形式。

与上例不同,现在当 H 0 H_0 H0 成立时,表示 μ ≤ μ 0 \mu \le \mu_0 μ≤μ0,因此
T = n ( X ˉ − μ 0 ) S ∗ ≤ T = n ( X ˉ − μ ) S ∗ ∼ t ( n − 1 ) T=\frac{\sqrt{n}(\bar{X}-\mu_0)}{S^*} \le T=\frac{\sqrt{n}(\bar{X}-\mu)}{S^*} \sim t(n-1) T=S∗n (Xˉ−μ0)≤T=S∗n (Xˉ−μ)∼t(n−1) (注意,当 H 0 H_0 H0 成立时, T T T 本身未必服从 t ( n − 1 ) t(n-1) t(n−1) 分布)由上述不等式得
P H 0 { n ( X ˉ − μ 0 ) S ∗ ≥ k } ≤ P H 0 { n ( X ˉ − μ ) S ∗ ≥ k } P_{H_0}\left\{\frac{\sqrt{n}(\bar{X}-\mu_0)}{S^*}\ge k \right\} \le P_{H_0}\left\{\frac{\sqrt{n}(\bar{X}-\mu)}{S^*}\ge k \right\} PH0{S∗n (Xˉ−μ0)≥k}≤PH0{S∗n (Xˉ−μ)≥k} 对给定的水平 α \alpha α,查 t ( n − 1 ) t(n-1) t(n−1) 分布表,得 k = t α ( n − 1 ) k=t_\alpha(n-1) k=tα(n−1),使得
P H 0 { n ( X ˉ − μ ) S ∗ ≥ t α ( n − 1 ) } = α P_{H_0}\left\{\frac{\sqrt{n}(\bar{X}-\mu)}{S^*} \ge t_\alpha(n-1) \right\}=\alpha PH0{S∗n (Xˉ−μ)≥tα(n−1)}=α 则
P H 0 ( W ) = P H 0 { T ≥ t α ( n − 1 ) } ≤ P H 0 { n ( X ˉ − μ ) S ∗ ≥ t α ( n − 1 ) } = α P_{H_0}(W)=P_{H_0}\{T \ge t_\alpha(n-1)\} \le P_{H_0}\left\{\frac{\sqrt{n}(\bar{X}-\mu)}{S^*} \ge t_\alpha(n-1) \right\}=\alpha PH0(W)=PH0{T≥tα(n−1)}≤PH0{S∗n (Xˉ−μ)≥tα(n−1)}=α 这表明 H 0 H_0 H0 的水平 α \alpha α 的拒绝域为
W = { T ≥ t α ( n − 1 ) } W=\{T \ge t_\alpha(n-1)\} W={T≥tα(n−1)}


尽管以上两个例子中,原假设 H 0 H_0 H0 的形式不同,实际意义也不一样,但在同一水平 α \alpha α 下,它们的拒绝域却是相同的,即检验规则是相同的。因此在对正态总体的参数作单侧假设检验时,当遇到原假设 H 0 H_0 H0 及备择假设 H 1 H_1 H1 均为复合形式的单侧假设,可以考虑先将原假设换成简单假设,再进行讨论。

参考文献

1\] 《应用数理统计》,施雨,西安交通大学出版社。

相关推荐
qq_ddddd1 天前
对于随机变量x1, …, xn,其和的范数平方的期望不超过n倍各随机变量范数平方的期望之和
人工智能·神经网络·线性代数·机器学习·概率论·1024程序员节
无风听海2 天前
神经网络之样本方差的无偏估计
人工智能·神经网络·概率论
我要学习别拦我~4 天前
挑战概率直觉:蒙提霍尔问题的解密与应用
经验分享·概率论
一条星星鱼4 天前
从0到1:如何用统计学“看透”不同睡眠PSG数据集的差异(域偏差分析实战)
人工智能·深度学习·算法·概率论·归一化·睡眠psg
无风听海4 天前
神经网络之从自由度角度理解方差的无偏估计
神经网络·机器学习·概率论
CLubiy5 天前
【研究生随笔】PyTorch中的概率论
人工智能·pytorch·深度学习·概率论
龙俊杰的读书笔记5 天前
《小白学随机过程》第一章:随机过程——定义和形式 (附录1 探究随机变量)
人工智能·机器学习·概率论·随机过程和rl
zyq~6 天前
【课堂笔记】概率论-1
笔记·概率论
十二imin13 天前
霍夫丁不等式详解
算法·机器学习·概率论
牟同學15 天前
从赌场到AI:期望值如何用C++改变世界?
c++·人工智能·概率论