OSG编程指南<十七>:OSG光照与材质

1、OSG光照

OSG 全面支持 OpenGL 的光照特性,包括材质属性(material property)、光照属性(light property)和光照模型(lighting model)。与 OpenGL 相似,OSG 中的光源也是不可见的,而非渲染一个灯泡或其他自然形状。同样,光源会创建着色效果,但并不创建阴影,osgShadow 可以用来创建阴影。

1.1 osg::Light 类

OSG 将 OpenGL 中的 glLight()作了一个 light 状态的类封装,用于保存灯光的模式与属性参数信息。osg::Light 类派生自 osg::StateAttribute 类,继承了对模式与属性参数信息的操作接口。在 osg::light 类中通过 apply(State&state)函数将灯光的状态参数信息应用到 OpenGL 的状态机中。

osg::Light 类包括的属性参数如下:

cpp 复制代码
int _lightnum; //灯光数量
Vec4 _ambient; //环境光颜色
Vec4 _diffuse; //漫射光颜色
Vec4 _specular; //镜面光颜色
Vec4 _position; //光源的位置信息
Vec3 _direction; //光源的方向
float _constant_attenuation; //常量衰减
float _linear_attenuation; //线性衰减
float _quadratic_attenuation;//二次方衰减
float _spot_exponent; //指数衰减
float _spot_cutoff; //关闭衰减(spread)

上面的参数应该都比较容易理解。OSG 支持最多 8 个光源,即 GL_LIGHT0~GL_LIGHT7,这与OpenGL 版本也有关系。

1.2 osg::LightSource 类

osg::LightSource 类直接继承自 osg::Group。作为一个灯光管理类,继承了 osg::Group 类的管理节点的接口;将灯光作为一个节点可以加入到场景图中进行渲染。

osg::LightSource 类中的成员函数为:

cpp 复制代码
void setReferenceFrame (ReferenceFrame rf)//设置帧引用

帧引用包括如下两个枚举变量:

cpp 复制代码
enum ReferenceFrame
{
RELATIVE_RF, //相对帧引用
ABSOLUTE_RF //绝对帧引用
};

设置光源的引用帧时,不是相对于父节点的帧引用,就是相对于绝对坐标的帧,默认的设置为RELATIVE_RF,设置帧引用为 RELATIVE_RF 同样会设置 CullingActive 的标志量为(ON)状态,并且对它的父节点也起作用;否则,对它与它所有的父节点都禁用拣选(Culling),对防止不合适的拣选是必需的,如果绝对光源在场景图的深处将会对拣选的时间有影响,因此,推荐在场景的顶部使用绝对的光源。

1.3 场景中使用光源

在一个场景中添加光源主要包括以下步骤:

(1)指定场景模型的法线。

(2)允许光照并设置光照状态。

(3)指定光源属性并关联到场景图形。

对于场景中的模型,只有当其中设有单位法线时才会正确地显示光照。当场景中的模型没有指定法线时,可以用前面讲到的 osgUtil::SmoothingVisitor 自动生成法线。需要注意的是,法向量必须单位化。有时场景中的模型虽然指定了单位法向量,但是光照的计算结果过于明亮或过于暗淡(可能是缩放变换造成的),这时最有效的解决方案是在 StateSet 中允许法线的重放缩模式,代码如下:

cpp 复制代码
osg::StateSet*state = geode->setOrCreateStateSet();
state->setMode(GL_RESCALE_NORMAL, osg::StateAttribute::ON);

与在 OpenGL 中相同,这一特性可以保证法线在均匀放缩变换时仍然保持单位长度。如果场景中的放缩变换是非均匀的,那么读者可以允许法线归一化模式,以保证法线为单位长度。由于要进行法线的重新放缩,归一化模式往往会耗费大量的时间,编程时要尽量避免。归一化模式的代码如下:

cpp 复制代码
osg::StateSet*state = geode->setOrCreateStateSet();
state->setMode(GL_NORMALIZE, osg::StateAttribute::ON);

要在 OSG 中获得光照效果,需要允许光照并至少允许一个光源。程序 osgviewer 在默认情况下就是这样做的,它在根节点的 StateSet 中已经设置了相应的模式。读者可以在自己的程序中进行相同的设置。下面的代码段用于允许光照并为根节点的 StateSet 允许两个光源(GL_LIGHT0 和 GL_LIGHT1):

cpp 复制代码
osg::StateSet*state = root->getOrCreateStateSet();
state->setMode(GL_LIGHTING, osg::StateAttribute::ON);
state->setMode(GL_LIGHT0, osg::StateAttribute::ON);
state->setMode(GL_LIGHT1, osg::StateAttribute::ON);

在场景中添加一个光源,可以创建一个 osg::Light 对象以定义光源参数,然后将 osg::Light 添加到一个 osg::LightSource 节点中,并将 LightSource 节点添加到场景图形。osg::LightSource 是一个包含了唯一的 Light 定义的高效的组节点,而由 osg::Light 定义的光源将对整个场景产生影响。下面的代码实现将 osg::Light 添加到 osg::LightSource 对象中:

cpp 复制代码
osg::ref_ptr<osg::LightSource> ls = new osg::LightSource;
ls->setLight(light.get());

在实际生活中,当光照照射到物体上时都会反射等现象,所以,在对光源的设置完成以后需要设置模型的表面材质,下面先看看关于光照的两个示例。

1.4 简单光源示例

cpp 复制代码
#include <windows.h>
#include <osgViewer/Viewer>
#include <osg/Vec3>
#include <osg/Vec4>
#include <osg/Quat>
#include <osg/Matrix>
#include <osg/ShapeDrawable>
#include <osg/Geometry>
#include <osg/Geode>
#include <osg/Notify>
#include <osg/MatrixTransform>
#include <osg/Texture3D>
#include <osg/Stencil>
#include <osg/ColorMask>
#include <osg/GLExtensions>
#include <osg/Depth>
#include <osg/AnimationPath>
#include <osg/Transform>
#include <osg/Material>
#include <osg/NodeCallback>
#include <osg/Depth>
#include <osg/CullFace>
#include <osg/TexMat>
#include <osg/TexGen>
#include <osg/TexEnv>
#include <osg/TextureCubeMap>
#include <osgViewer/ViewerEventHandlers> //事件监听
#include <osgGA/StateSetManipulator> //事件响应类,对渲染状态进行控制
#include <osgUtil/Simplifier> //简化几何体
#include <osgDB/WriteFile>
#include <osgDB/ReadFile>
#include <osg/Camera>
#include <osg/Light>
#include <osg/LightSource>
#include <osg/BoundingSphere>
#include <osg/BoundingBox>
#include <osgUtil/Optimizer>

#include <iostream>

#pragma comment(lib, "OpenThreadsd.lib")
#pragma comment(lib, "osgd.lib")
#pragma comment(lib, "osgDBd.lib")
#pragma comment(lib, "osgUtild.lib")
#pragma comment(lib, "osgGAd.lib")
#pragma comment(lib, "osgViewerd.lib")
#pragma comment(lib, "osgTextd.lib")

//向场景中添加光源
osg::ref_ptr<osg::Group> createLight(osg::ref_ptr<osg::Node> node)
{
	osg::ref_ptr<osg::Group> lightRoot = new osg::Group();
	lightRoot->addChild(node);

	//开启光照
	osg::ref_ptr<osg::StateSet> stateset = new osg::StateSet();
	stateset = lightRoot->getOrCreateStateSet();
	stateset->setMode(GL_LIGHTING, osg::StateAttribute::ON);
	stateset->setMode(GL_LIGHT0, osg::StateAttribute::ON);

	//计算包围盒
	osg::BoundingSphere bs;
	node->computeBound();
	bs = node->getBound();

	//创建一个Light对象
	osg::ref_ptr<osg::Light> light = new osg::Light();
	light->setLightNum(0);

	//设置方向
	light->setDirection(osg::Vec3(0.0f, 0.0f, 1.0f));

	//设置位置
	light->setPosition(osg::Vec4(bs.center().x(), bs.center().y(), bs.center().z() + bs.radius(), 1.0f));

	//设置环境光的颜色
	light->setAmbient(osg::Vec4(0.0f, 1.0f, 0.0f, 1.0f));

	//设置散射光的颜色
	light->setDiffuse(osg::Vec4(1.0f, 0.0f, 0.0f, 1.0f));

	//设置恒衰减指数
	light->setConstantAttenuation(1.0f);

	//设置线形衰减指数
	light->setLinearAttenuation(0.0f);

	//设置二次方衰减指数
	light->setQuadraticAttenuation(0.0f);

	//创建光源
	osg::ref_ptr<osg::LightSource> lightSource = new osg::LightSource();
	lightSource->setLight(light.get());

	lightRoot->addChild(lightSource.get());

	return lightRoot.get();
}

int main()
{
	osg::ref_ptr<osgViewer::Viewer> viewer = new osgViewer::Viewer();

	osg::ref_ptr<osg::Group> root = new osg::Group();

	//读取模型
	osg::ref_ptr<osg::Node> node = osgDB::readNodeFile("cessna.osgt");

	//向场景中添加光源
	root->addChild(createLight(node.get()));

	//优化场景数据
	osgUtil::Optimizer optimzer;
	optimzer.optimize(root.get());

	//方便查看在多边形之间切换,以查看三角网
	viewer->addEventHandler(new osgGA::StateSetManipulator(viewer->getCamera()->getOrCreateStateSet()));
	viewer->addEventHandler(new osgViewer::StatsHandler());
	viewer->addEventHandler(new osgViewer::WindowSizeHandler());
	viewer->setSceneData(root.get());
	viewer->setUpViewInWindow(600, 600, 800, 600);

	return viewer->run();
}

1.5 聚光灯示例

cpp 复制代码
#include <windows.h>
#include <osgViewer/Viewer>
#include <osg/Vec3>
#include <osg/Vec4>
#include <osg/Quat>
#include <osg/Matrix>
#include <osg/ShapeDrawable>
#include <osg/Geometry>
#include <osg/Geode>
#include <osg/TexGenNode>
#include <osg/Notify>
#include <osg/MatrixTransform>
#include <osg/PositionAttitudeTransform>
#include <osg/Texture3D>
#include <osg/Stencil>
#include <osg/ColorMask>
#include <osg/GLExtensions>
#include <osg/Depth>
#include <osg/AnimationPath>
#include <osg/Transform>
#include <osg/Material>
#include <osg/NodeCallback>
#include <osg/Depth>
#include <osg/CullFace>
#include <osg/TexMat>
#include <osg/TexGen>
#include <osg/TexEnv>
#include <osg/TextureCubeMap>
#include <osgViewer/ViewerEventHandlers> //事件监听
#include <osgGA/StateSetManipulator> //事件响应类,对渲染状态进行控制
#include <osgUtil/Simplifier> //简化几何体
#include <osgDB/WriteFile>
#include <osgDB/ReadFile>
#include <osg/Camera>
#include <osg/Light>
#include <osg/LightSource>
#include <osg/BoundingSphere>
#include <osg/BoundingBox>
#include <osgUtil/Optimizer>
#include <osgUtil/DelaunayTriangulator>
#include <iostream>

#pragma comment(lib, "OpenThreadsd.lib")
#pragma comment(lib, "osgd.lib")
#pragma comment(lib, "osgDBd.lib")
#pragma comment(lib, "osgUtild.lib")
#pragma comment(lib, "osgGAd.lib")
#pragma comment(lib, "osgViewerd.lib")
#pragma comment(lib, "osgTextd.lib")


//创建聚光灯纹理的mipmap贴图
osg::ref_ptr<osg::Image> createSpotLightImage(const osg::Vec4& centerColour, const osg::Vec4& backgroudColour, unsigned int size, float power)
{
	//创建Image对象
	osg::ref_ptr<osg::Image> image = new osg::Image;
	//动态分配一个size*size大小的image
	image->allocateImage(size, size, 1, GL_RGBA, GL_UNSIGNED_BYTE);

	//填充image
	//以中心为原点,颜色逐渐向四周衰减
	float mid = (float(size) - 1) * 0.5f;
	float div = 2.0f / float(size);
	for (unsigned int r = 0; r < size; ++r)
	{
		unsigned char* ptr = image->data(0, r, 0);
		for (unsigned int c = 0; c < size; ++c)
		{
			float dx = (float(c) - mid) * div;
			float dy = (float(r) - mid) * div;
			float r = powf(1.0f - sqrtf(dx * dx + dy * dy), power);
			if (r < 0.0f) r = 0.0f;
			osg::Vec4 color = centerColour * r + backgroudColour * (1.0f - r);
			*ptr++ = (unsigned char)((color[0]) * 255.0f);
			*ptr++ = (unsigned char)((color[1]) * 255.0f);
			*ptr++ = (unsigned char)((color[2]) * 255.0f);
			*ptr++ = (unsigned char)((color[3]) * 255.0f);
		}
	}
	return image.get();
}

//创建聚光灯状态属性
osg::ref_ptr<osg::StateSet> createSpotLightDecoratorState(unsigned int lightNum, unsigned int textureUnit)
{
	osg::ref_ptr<osg::StateSet> stateset = new osg::StateSet;

	//开启ID为lightNum的光照
	stateset->setMode(GL_LIGHT0 + lightNum, osg::StateAttribute::ON);

	//设置中心的颜色和环境光的颜色
	osg::Vec4 centerColour(0.2f, 1.0f, 0.2f, 1.0f);
	osg::Vec4 ambientColour(0.05f, 0.05f, 0.05f, 1.0f);

	//创建聚光灯纹理
	osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D();
	texture->setImage(createSpotLightImage(centerColour, ambientColour, 64, 5.0));
	texture->setBorderColor(osg::Vec4(ambientColour));
	texture->setWrap(osg::Texture::WRAP_S, osg::Texture::CLAMP_TO_BORDER);
	texture->setWrap(osg::Texture::WRAP_T, osg::Texture::CLAMP_TO_BORDER);
	texture->setWrap(osg::Texture::WRAP_R, osg::Texture::CLAMP_TO_BORDER);

	//打开纹理单元
	stateset->setTextureAttributeAndModes(textureUnit, texture.get(), osg::StateAttribute::ON);

	//设置自动生成纹理坐标
	stateset->setTextureMode(textureUnit, GL_TEXTURE_GEN_S, osg::StateAttribute::ON);
	stateset->setTextureMode(textureUnit, GL_TEXTURE_GEN_T, osg::StateAttribute::ON);
	stateset->setTextureMode(textureUnit, GL_TEXTURE_GEN_R, osg::StateAttribute::ON);
	stateset->setTextureMode(textureUnit, GL_TEXTURE_GEN_Q, osg::StateAttribute::ON);

	return stateset.get();
}

//创建聚光灯节点
osg::ref_ptr<osg::Node> createSpotLightNode(const osg::Vec3& position, const osg::Vec3& direction, float angle, unsigned int lightNum, unsigned int textureUnit)
{
	osg::ref_ptr<osg::Group> group = new osg::Group;

	//创建光源
	osg::ref_ptr<osg::LightSource> lightsource = new osg::LightSource;
	osg::ref_ptr<osg::Light> light = lightsource->getLight();
	light->setLightNum(lightNum);
	light->setPosition(osg::Vec4(position, 1.0f));
	light->setAmbient(osg::Vec4(0.00f, 0.00f, 0.05f, 1.0f));
	light->setDiffuse(osg::Vec4(1.0f, 1.0f, 1.0f, 1.0f));
	group->addChild(lightsource);

	//计算法向量
	osg::Vec3 up(0.0f, 0.0f, 1.0f);
	up = (direction ^ up) ^ direction;
	up.normalize();

	//创建自动生成纹理坐标节点
	osg::ref_ptr<osg::TexGenNode> texgenNode = new osg::TexGenNode;
	//关联纹理单元
	texgenNode->setTextureUnit(textureUnit);
	//设置纹理坐标生成器
	osg::ref_ptr<osg::TexGen> texgen = texgenNode->getTexGen();
	//设置模式为视觉线性
	texgen->setMode(osg::TexGen::EYE_LINEAR);
	//从视图中指定参考平面
	texgen->setPlanesFromMatrix(osg::Matrixd::lookAt(position, position + direction, up) *
		osg::Matrixd::perspective(angle, 1.0, 0.1, 100));

	group->addChild(texgenNode.get());

	return group.get();
}

//创建动画路径(请参看后面章节的OSG动画)
osg::ref_ptr<osg::AnimationPath> createAnimationPath(const osg::Vec3& center, float radius, double looptime)
{
	osg::ref_ptr<osg::AnimationPath> animationPath = new osg::AnimationPath;
	animationPath->setLoopMode(osg::AnimationPath::LOOP);

	int numSamples = 40;
	float yaw = 0.0f;
	float yaw_delta = 2.0f * osg::PI / ((float)numSamples - 1.0f);
	float roll = osg::inDegrees(30.0f);

	double time = 0.0f;
	double time_delta = looptime / (double)numSamples;
	for (int i = 0; i < numSamples; ++i)
	{
		osg::Vec3 position(center + osg::Vec3(sinf(yaw) * radius, cosf(yaw) * radius, 20.0f));
		osg::Quat rotation(osg::Quat(roll, osg::Vec3(0.0, 1.0, 0.0)) * osg::Quat(-(yaw + osg::inDegrees(90.0f)), osg::Vec3(0.0, 0.0, 1.0)));

		animationPath->insert(time, osg::AnimationPath::ControlPoint(position, rotation));

		yaw += yaw_delta;
		time += time_delta;

	}
	return animationPath.get();
}

//创建地形平面
osg::ref_ptr <osg::Geode> createBase()
{
	//创建顶点数组
	osg::ref_ptr<osg::Vec3Array> coords = new osg::Vec3Array();
	//添加顶点数据
	int nMin = -5;
	int nMax = 10;
	for (int i = -100; i < 100; i += 10)
	{
		if (i > -100 && i < 0)
		{
			nMin = -6;
			nMax = 3;
		}
		else if (i > 0 && i < 50)
		{
			nMin = -5;
			nMax = 1;
		}
		else if (i > 50 && i < 100)
		{
			nMin = 1;
			nMax = 5;
		}

		for (int j = -100; j < 100; j += 10)
		{
			float nZ = (float)(nMin+nMax)/2;
			osg::Vec3 vertex(i, j, nZ);
			coords->push_back(vertex);
		}
	}

	//创建颜色数组
	osg::ref_ptr<osg::Vec4Array> color = new osg::Vec4Array();
	//添加颜色数据 
	for (unsigned int i = 0; i < 400; i++)
	{
		int nR = rand() % 10 + 2;
		color->push_back(osg::Vec4(0.0f, (double)nR / 10.0, 0.0f, 0.5f));
	}

	//创建Delaunay三角网对象
	osg::ref_ptr<osgUtil::DelaunayTriangulator> dt = new osgUtil::DelaunayTriangulator(coords.get());
	//生成三角网
	dt->triangulate();

	//创建几何体
	osg::ref_ptr<osg::Geometry> pGeometry = new osg::Geometry();

	//设置顶点数组
	pGeometry->setVertexArray(coords.get());

	osg::ref_ptr<osg::Image> sImagePath = osgDB::readImageFile("Terrain.png");
	if (sImagePath.get())
	{
		osg::ref_ptr<osg::Texture2D> texture2D = new osg::Texture2D;
		texture2D->setImage(sImagePath.get());

		// 绑定纹理后,释放内部的ref_ptr<Image>,删除image图像
		texture2D->setUnRefImageDataAfterApply(true);

		// 建立纹理顶点
		osg::ref_ptr<osg::Vec2Array> pVec2Array = new osg::Vec2Array;
		for (int i = -100; i < 100; i += 10)
		{
			for (int j = -100; j < 100; j += 10)
			{
				osg::Vec2 textCoord(0.0, 0.0);
				textCoord.x() = (double)(j + 100.0) / 200.0;
				textCoord.y() = (double)(i + 100.0) / 200.0;
				pVec2Array->push_back(textCoord);
			}
		}

		// Texture类关联到渲染状态StateSet
		osg::ref_ptr<osg::StateSet> pStateSet = pGeometry->getOrCreateStateSet();

		// 将纹理关联给StateSet纹理单元0、osg::StateAttribute::OFF关闭纹理
		pStateSet->setTextureAttributeAndModes(0, texture2D.get(), osg::StateAttribute::ON);

		pGeometry->setTexCoordArray(0, pVec2Array.get());

		// 建立法线数组normal
		osg::ref_ptr<osg::Vec3Array> pVec3ArrayNormal = new osg::Vec3Array;
		pGeometry->setNormalArray(pVec3ArrayNormal.get());
		pGeometry->setNormalBinding(osg::Geometry::BIND_OVERALL);

		//垂直于Z轴负方向
		pVec3ArrayNormal->push_back(osg::Vec3(0.0, 0.0, 1.0));
		pGeometry->setStateSet(pStateSet);
	}
	else
	{
		//设置颜色数组
		pGeometry->setColorArray(color.get());

		//设置颜色的绑定方式为单个顶点
		pGeometry->setColorBinding(osg::Geometry::BIND_PER_VERTEX);
	}

	//添加到绘图基元
	pGeometry->addPrimitiveSet(dt->getTriangles());

	osg::ref_ptr <osg::Geode> pGNode = new osg::Geode;

	pGNode->addChild(pGeometry);

	return pGNode.release();
}

//创建动画模型
osg::ref_ptr<osg::Node> createMovingModel(const osg::Vec3& center, float radius)
{
	float animationLength = 10.0f;

	osg::ref_ptr<osg::AnimationPath> animationPath = createAnimationPath(center, radius, animationLength);

	osg::ref_ptr<osg::Group> model = new osg::Group;

	osg::ref_ptr<osg::Node> cessna = osgDB::readNodeFile("cessna.osg");
	if (cessna.get())
	{
		const osg::BoundingSphere& bs = cessna->getBound();

		float size = radius / bs.radius() * 0.3f;
		osg::ref_ptr<osg::MatrixTransform> positioned = new osg::MatrixTransform;
		positioned->setDataVariance(osg::Object::STATIC);
		positioned->setMatrix(osg::Matrix::translate(-bs.center()) *
			osg::Matrix::scale(size, size, size) *
			osg::Matrix::rotate(osg::inDegrees(180.0f), 0.0f, 0.0f, 2.0f));

		positioned->addChild(cessna.get());

		osg::ref_ptr<osg::MatrixTransform> xform = new osg::MatrixTransform;
		xform->setUpdateCallback(new osg::AnimationPathCallback(animationPath, 0.0f, 2.0));
		xform->addChild(positioned);

		//添加聚光灯节点
		xform->addChild(createSpotLightNode(osg::Vec3(0.0f, 0.0f, 0.0f), osg::Vec3(0.0f, 1.0f, -1.0f), 60.0f, 0, 1));

		model->addChild(xform.get());
	}

	return model.get();
}

//创建场景
osg::ref_ptr<osg::Node> createModel()
{
	osg::Vec3 center(0.0f, 0.0f, 0.0f);
	float radius = 100.0f;

	//创建动画模型
	osg::ref_ptr<osg::Node> shadower = createMovingModel(center, radius * 0.5f);

	//创建地形平面
	osg::ref_ptr<osg::Node> shadowed = createBase();

	//创建场景组节点
	osg::ref_ptr<osg::Group> root = new osg::Group;

	//设置状态属性
	//root->setStateSet(createSpotLightDecoratorState(0, 1));

	//添加子节点
	root->addChild(shadower.get());
	root->addChild(shadowed.get());

	return root.get();
}

int main()
{
	osg::ref_ptr<osgViewer::Viewer> viewer = new osgViewer::Viewer();

	osg::ref_ptr<osg::Group> root = new osg::Group();

	//添加场景
	root->addChild(createModel());

	//优化场景数据
	osgUtil::Optimizer optimizer;
	optimizer.optimize(root.get());

	//方便查看在多边形之间切换,以查看三角网
	viewer->addEventHandler(new osgGA::StateSetManipulator(viewer->getCamera()->getOrCreateStateSet()));
	viewer->addEventHandler(new osgViewer::StatsHandler());
	viewer->addEventHandler(new osgViewer::WindowSizeHandler());
	viewer->setSceneData(root.get());
	viewer->setUpViewInWindow(600, 600, 1000, 800);

	return viewer->run();
}

2、OSG材质

2.1 材质类

OSG 材质类(osg::Material)继承自 osg::StateAttribute 类。osg::Material 封装了 OpenGL 的 glMaterial()和 glColorMaterial()指令的函数功能。

在场景中设置节点的材质属性,首先要创建一个 osg::Material 对象,然后设置颜色和其他参数,再关联到场景图形的 StateSet 中,如下面的代码:

cpp 复制代码
osg::StateSet* state = node->getOrCreateStateSet();
osg::ref_ptr<osg::Material> mat = new osg::Material;
state->setAttribute( mat.get() );

osg::Material 类包含的主要属性如下:

cpp 复制代码
bool _ambientFrontAndBack; //前面与后面的环境光
Vec4 _ambientFront; //前面的环境光, r、g、b、w
Vec4 _ambientBack; //后面的环境光,r、g、b、w
bool _diffuseFrontAndBack; //前面与后面的漫射光
Vec4 _diffuseFront; //前面的漫射光,r、g、b、w
Vec4 _diffuseBack; //后面的漫射光,r、g、b、w
bool _specularFrontAndBack; //前面与后面的镜面光
Vec4 _specularFront; //前面的镜面光,r、g、b、w
Vec4 _specularBack; //后面的镜面光,r、g、b、w
bool _emissionFrontAndBack; //前面与后面的发射光(emission)
Vec4 _emissionFront; //前面的 emission,r、g、b、w
Vec4 _emissionBack; //后面的 emission,r、g、b、w
bool _shininessFrontAndBack; //前面与后面的发光(shininess)
float _shininessFront; //前面的 shininess
float _shininessBack; //后面的 shininess

注意:shininess 是一个在 0~128.0 之间的值,值越大,亮点越小、越亮。

OSG 材质的面如下:

cpp 复制代码
enum Face
{
FRONT = GL_FRONT, //前
BACK = GL_BACK, //后
FRONT_AND_BACK = GL_FRONT_AND_BACK //前、后
};

OSG 材质的颜色模式如下:

cpp 复制代码
enum ColorMode
{
AMBIENT = GL_AMBIENT, //环境光颜色
DIFFUSE = GL_DIFFUSE, //漫射光颜色
SPECULAR = GL_SPECULAR, //镜面光颜色
EMISSION = GL_EMISSION, //发射光颜色
AMBIENT_AND_DIFFUSE = GL_AMBIENT_AND_DIFFUSE, //环境与漫射光颜色
OFF //关闭模式
};

在进行很多 OpenGL 的操作时,直接设置材质属性可能会过于耗费资源,而 OSG 提供了一种颜色跟踪材质的高效方法,操作比直接修改材质属性的效率更高,颜色跟踪材质(color material)允许用户程序通过改变当前颜色的方法,自动改变某一特定的材质属性。在许多情形下,这一操作比直接修改材质属性的效率要高,能加强光照场景和无光照场景的联系,并满足应用程序对材质的需要。

允许颜色跟踪材质的特性需要调用 setColorMode()方法。osg::Material 类为之定义了枚举量AMBIENT、DIFFUSE、SPECULAR、EMISSION、AMBIENT_AND_DIFFUSE 以及 OFF。默认情况下,颜色跟踪模式被设置为 OFF,颜色跟踪材质被禁止。如果用户程序设置颜色跟踪模式为其他的值,那么 OSG 将为特定的材质属性开启颜色跟踪材质特性,此时主颜色的改变将会改变相应的材质属性。

注意:根据颜色跟踪模式的取值不同,Material 类会自动允许或禁止GL_COLOR_MATERIAL。因此,用户程序不需要调用 setAttributeAndModes()来允许或禁止相关的模式值。

2.2 材质类示例

cpp 复制代码
#include <windows.h>
#include <osgViewer/Viewer>
#include <osg/Vec3>
#include <osg/Vec4>
#include <osg/Quat>
#include <osg/Matrix>
#include <osg/ShapeDrawable>
#include <osg/Geometry>
#include <osg/Geode>
#include <osg/Notify>
#include <osg/MatrixTransform>
#include <osg/Texture3D>
#include <osg/Stencil>
#include <osg/ColorMask>
#include <osg/GLExtensions>
#include <osg/Depth>
#include <osg/AnimationPath>
#include <osg/Transform>
#include <osg/Material>
#include <osg/NodeCallback>
#include <osg/Depth>
#include <osg/CullFace>
#include <osg/TexMat>
#include <osg/TexGen>
#include <osg/TexEnv>
#include <osg/TextureCubeMap>
#include <osgViewer/ViewerEventHandlers> //事件监听
#include <osgGA/StateSetManipulator> //事件响应类,对渲染状态进行控制
#include <osgUtil/Simplifier> //简化几何体
#include <osgDB/WriteFile>
#include <osgDB/ReadFile>
#include <osg/Camera>
#include <osg/Light>
#include <osg/LightSource>
#include <osg/BoundingSphere>
#include <osg/BoundingBox>
#include <osgUtil/Optimizer>
#include <osg/TexGenNode>
#include <osgUtil/DelaunayTriangulator>
#include <iostream>
#include <osg/Material>
#include <osg/CullFace>

#pragma comment(lib, "OpenThreadsd.lib")
#pragma comment(lib, "osgd.lib")
#pragma comment(lib, "osgDBd.lib")
#pragma comment(lib, "osgUtild.lib")
#pragma comment(lib, "osgGAd.lib")
#pragma comment(lib, "osgViewerd.lib")
#pragma comment(lib, "osgTextd.lib")

//创建一个四边形节点
osg::ref_ptr<osg::Node> createNode()
{
	osg::ref_ptr<osg::Geode> geode = new osg::Geode();

	osg::ref_ptr<osg::Geometry> geom = new osg::Geometry();

	//设置顶点
	osg::ref_ptr<osg::Vec3Array> vc = new osg::Vec3Array();
	vc->push_back(osg::Vec3(0.0f, 0.0f, 0.0f));
	vc->push_back(osg::Vec3(1.0f, 0.0f, 0.0f));
	vc->push_back(osg::Vec3(1.0f, 0.0f, 1.0f));
	vc->push_back(osg::Vec3(0.0f, 0.0f, 1.0f));

	geom->setVertexArray(vc.get());

	//设置纹理坐标
	osg::ref_ptr<osg::Vec2Array> vt = new osg::Vec2Array();
	vt->push_back(osg::Vec2(0.0f, 0.0f));
	vt->push_back(osg::Vec2(1.0f, 0.0f));
	vt->push_back(osg::Vec2(1.0f, 1.0f));
	vt->push_back(osg::Vec2(0.0f, 1.0f));

	geom->setTexCoordArray(0, vt.get());

	//设置法线
	osg::ref_ptr<osg::Vec3Array> nc = new osg::Vec3Array();
	nc->push_back(osg::Vec3(0.0f, -1.0f, 0.0f));

	geom->setNormalArray(nc.get());
	geom->setNormalBinding(osg::Geometry::BIND_OVERALL);

	//添加图元
	geom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::QUADS, 0, 4));

	//绘制
	geode->addDrawable(geom.get());

	return geode.get();
}

int main()
{
	osg::ref_ptr<osgViewer::Viewer> viewer = new osgViewer::Viewer();

	osg::ref_ptr<osg::Group> root = new osg::Group();

	osg::ref_ptr<osg::Node> node = createNode();

	//得到状态属性
	osg::ref_ptr<osg::StateSet> stateset = new osg::StateSet();
	stateset = node->getOrCreateStateSet();

	//创建材质对象
	osg::ref_ptr<osg::Material> mat = new osg::Material();
	//设置正面散射颜色
	mat->setDiffuse(osg::Material::FRONT, osg::Vec4(1.0f, 0.0f, 0.0f, 1.0f));
	//设置正面镜面颜色
	mat->setSpecular(osg::Material::FRONT, osg::Vec4(1.0f, 0.0f, 0.0f, 1.0f));
	//设置正面指数
	mat->setShininess(osg::Material::FRONT, 90.0f);
	stateset->setAttribute(mat.get());

	//设置背面剔除
	osg::ref_ptr<osg::CullFace> cullface = new osg::CullFace(osg::CullFace::BACK);
	stateset->setAttribute(cullface.get());
	stateset->setMode(GL_CULL_FACE, osg::StateAttribute::OFF);

	root->addChild(node.get());

	//优化场景数据
	osgUtil::Optimizer optimzer;
	optimzer.optimize(root.get());

	//方便查看在多边形之间切换,以查看三角网
	viewer->addEventHandler(new osgGA::StateSetManipulator(viewer->getCamera()->getOrCreateStateSet()));
	viewer->addEventHandler(new osgViewer::StatsHandler());
	viewer->addEventHandler(new osgViewer::WindowSizeHandler());
	viewer->setSceneData(root.get());
	viewer->setUpViewInWindow(600, 600, 800, 600);

	return viewer->run();
}
相关推荐
da_vinci_x3 天前
Painter AI 材质 x 智能遮罩:告别“风格化”手K地狱
人工智能·aigc·材质·设计师·技术美术·工作流·游戏美术
CG_MAGIC3 天前
3ds Max材质高清参数设置:10分钟提升渲染真实感
3d·vr·3dmax·材质·vray·渲云渲染
云卓SKYDROID4 天前
无人机探测器技术要点解析
人工智能·无人机·材质·高科技·云卓科技
我救我自己6 天前
UE5.6 玻璃材质——Lumen
ue5·材质
DvLee10246 天前
UnityGLTF 材质创建与赋值流程
unity·材质
njsgcs7 天前
tekla python 获取所有材质信息 截面类型
材质
小喵要摸鱼8 天前
衣服面料材质宝典
材质
zhangzhangkeji11 天前
UE5 材质-17:水材质系列一 ,panner 平移节点,
ue5·材质
患得患失94911 天前
【threejs】材质共享导致的典型问题
材质·threejs
云卓SKYDROID16 天前
无人机动力学模块技术要点与难点
人工智能·无人机·材质·高科技·云卓科技