技巧-PyTorch中num_works的作用和实验测试

本专栏为深度学习的一些技巧,方法和实验测试,偏向于实际应用,后续不断更新,感兴趣童鞋可关,方便后续推送

简介

在 PyTorch 中,num_workers 是 DataLoader 中的一个参数,用于控制数据加载的并发线程数。它允许您在数据加载过程中使用多个线程,以提高数据加载的效率。

具体来说,num_workers 参数指定了 DataLoader 在加载数据时将创建的子进程数量。当 num_workers 大于 0 时,DataLoader 会自动利用多个子进程来加速数据加载。这有助于减少主进程的等待时间,并使得数据加载更加并行化。

例如,如果您有一个大型数据集需要加载,而且您的系统有多个 CPU 核心可用,您可以使用 num_workers 参数来提高数据加载的效率。假设您的系统有 4 个 CPU 核心,您可以将 num_workers 设置为 4,以使 DataLoader 在每个核心上创建一个子进程,并行加载数据.

使用方法

下面是一个示例代码,演示了如何使用 num_workers 参数来加速数据加载:

cpp 复制代码
python
import torch  
from torch.utils.data import DataLoader  
from torchvision import datasets, transforms  
  
# 定义数据预处理操作  
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])  
  
# 加载数据集  
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)  
  
# 创建 DataLoader,设置 num_workers 为 4  
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)  
 # 训练模型...

在上述示例中,我们使用 MNIST 数据集,设置了 num_workers 为 4,以利用系统的 4 个 CPU 核心并行加载数据。这将加速数据加载的过程,使得模型训练更加高效。

实测效果

我采用MMDetetion训练,它可以通过钩子函数统计每一iter的数据读取耗时(data_time)和总耗时(time)

当num_works设置为1时打印结果如下:
当num_works设置为4时打印结果如下:
实验效果与理论一致

相关推荐
m0_7431064639 分钟前
【论文笔记】MV-DUSt3R+:两秒重建一个3D场景
论文阅读·深度学习·计算机视觉·3d·几何学
m0_7431064641 分钟前
【论文笔记】TranSplat:深度refine的camera-required可泛化稀疏方法
论文阅读·深度学习·计算机视觉·3d·几何学
数据小爬虫@2 小时前
深入解析:使用 Python 爬虫获取苏宁商品详情
开发语言·爬虫·python
健胃消食片片片片2 小时前
Python爬虫技术:高效数据收集与深度挖掘
开发语言·爬虫·python
飞行的俊哥3 小时前
Linux 内核学习 3b - 和copilot 讨论pci设备的物理地址在内核空间和用户空间映射到虚拟地址的区别
linux·驱动开发·copilot
井底哇哇4 小时前
ChatGPT是强人工智能吗?
人工智能·chatgpt
Coovally AI模型快速验证4 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
AI浩4 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
可为测控4 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉
ℳ₯㎕ddzོꦿ࿐5 小时前
解决Python 在 Flask 开发模式下定时任务启动两次的问题
开发语言·python·flask