POJ 3233 Matrix Power Series 动态规划(矩阵的幂)

一、题目大意

给出一个矩阵A,

输出矩阵B的每一项对M取余数的值。

二、解题思路

以二维矩阵为例,首先计算K=2的情况,我们设结果矩阵为B

有如下表达式

那么不难看出,需要的矩阵其实就是以下的两个矩阵相乘后的左上角的N*N个

然后我们再来考虑K=3的情况,我们设结果矩阵为C

我们来考虑如何把C表示成矩阵B和A相乘的状态。

不难看出C矩阵就是以下两个矩阵相乘后的N*N的左上角

也是如下矩阵的左上角

综上,我们发现计算B和C时,乘号右边的矩阵是相同的,只是我们需要保证前N排的后N列必须始终为A[0][0]..A[0][N-1],A[1][0]..A[1][N-1],...

保留那些值我们可以通过给右边的矩阵右下角放置零矩阵即可。

那么最终题目的答案可以表示成下的表达式。

三、代码

cpp 复制代码
#include <iostream>
#include <vector>
using namespace std;
typedef vector<int> vec;
typedef vector<vec> mat;
int M;
mat mul(mat &A, mat &B)
{
    mat C = mat(A.size(), vec(B[0].size()));
    for (int i = 0; i < A.size(); i++)
    {
        for (int j = 0; j < B[0].size(); j++)
        {
            for (int k = 0; k < B.size(); k++)
            {
                C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % M;
            }
        }
    }
    return C;
}
mat pow(mat &A, int N)
{
    mat B = mat(A.size(), vec(A[0].size()));
    for (int i = 0; i < B.size(); i++)
    {
        B[i][i] = 1;
    }
    while (N > 0)
    {
        if (N & 1)
        {
            B = mul(B, A);
        }
        A = mul(A, A);
        N >>= 1;
    }
    return B;
}
void solve()
{
    int N, K;
    scanf("%d%d%d", &N, &K, &M);
    mat A = mat(2 * N, vec(2 * N));
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            scanf("%d", &A[i][j]);
        }
    }
    for (int i = 0; i < N; i++)
    {
        A[i + N][i] = 1;
        A[i + N][i + N] = 1;
    }
    mat B = mat(2 * N, vec(2 * N));
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            B[i][j] = A[i][j];
            B[i][j + N] = A[i][j];
        }
    }
    A = pow(A, K - 1);
    A = mul(B, A);
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            printf("%d%c", A[i][j] % M, j + 1 == N ? '\n' : ' ');
        }
    }
}
int main()
{
    solve();
    return 0;
}
相关推荐
一勺汤10 分钟前
YOLO12 改进、魔改|秩增强线性注意力RALA,通过增强 KV 缓冲与输出特征的矩阵秩,增强 YOLO 对小目标、复杂场景目标的识别能力
线性代数·yolo·矩阵·yolov12·yolo12·yolo12改进·小目标
爪哇部落算法小助手23 分钟前
爪哇周赛 Round 1
c语言·c++·算法
TT哇37 分钟前
【多源 BFS】3.地图中的最⾼点(medium)
算法·宽度优先
dllxhcjla39 分钟前
数据结构与算法 第一天
数据结构·算法
再__努力1点1 小时前
【11】特征检测与匹配:AKAZE特征算法详解与实现
人工智能·python·opencv·算法·计算机视觉·特征提取
Bender_ydc1 小时前
一个基于现代 C++23 Modules 的传统文化算法库,使用纯模块化设计实现(包含大六壬、六爻、紫薇斗数、八字、奇门遁甲)
算法·c++23
Kuo-Teng1 小时前
LeetCode 141. Linked List Cycle
java·算法·leetcode·链表·职场和发展
逸风尊者1 小时前
开发需掌握的知识:高精地图
人工智能·后端·算法
资深web全栈开发1 小时前
力扣2536子矩阵元素加1-差分数组解法详解
算法·leetcode·矩阵·golang·差分数组
汗流浃背了吧,老弟!2 小时前
中文分词全切分算法
算法·中文分词·easyui