基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(一)

系列文章目录

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别---深度学习算法应用(含全部工程源码)+数据集+模型(一)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别---深度学习算法应用(含全部工程源码)+数据集+模型(二)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别---深度学习算法应用(含全部工程源码)+数据集+模型(三)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别---深度学习算法应用(含全部工程源码)+数据集+模型(四)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别---深度学习算法应用(含全部工程源码)+数据集+模型(五)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别---深度学习算法应用(含全部工程源码)+数据集+模型(六)


目录


前言

本项目以卷积神经网络(CNN)模型为基础,对收集到的猫咪图像数据进行训练。通过采用数据增强技术和结合残差网络的方法,旨在提高模型的性能,以实现对不同猫的种类进行准确识别。

首先,项目利用CNN模型,这是一种专门用于图像识别任务的深度学习模型。该模型通过多个卷积和池化层,能够有效地捕捉图像中的特征,为猫的种类识别提供强大的学习能力。

其次,通过对收集到的数据进行训练,本项目致力于建立一个能够准确辨识猫的种类的模型。包括各种猫的图像,以确保模型能够泛化到不同的种类和场景。

为了进一步提高模型性能,采用了数据增强技术。数据增强通过对训练集中的图像进行旋转、翻转、缩放等操作,生成更多的变体,有助于模型更好地适应不同的视角和条件。

同时,引入残差网络的思想,有助于解决深层网络训练中的梯度消失问题,提高模型的训练效果。这种结合方法使得模型更具鲁棒性和准确性。

最终,通过本项目,实现了对猫的种类进行精准识别的目标。这对于宠物领域、动物学研究等方面都具有实际应用的潜力,为相关领域提供了一种高效而可靠的工具。

总体设计

本部分包括系统整体结构图和系统流程图。

系统整体结构图

系统整体结构如图所示。

系统流程图

系统流程如图所示。

运行环境

本部分包括计算型云服务器、Python环境、TensorFlow环境和MySQL环境。

计算型云服务器

在阿里云官网注册并充值后,搜索"云服务器ESC",即可购买计算型云服务器。

付费模式下选择抢占式实例,地域及可用区选择华北5,类型依次选择异构计算GPU/FPGA/NPU→GPU计算型→实例规格:ecs.gn5-c4g1.xlarge

单台实例规格上限价使用自动出价,数量为1,镜像选择市场中CentOS7.3(预装NVIDIAGPU驱动和深度学习框架)V1.0

设置密码后,单击"创建实例"即可。远程连接时,输入密码登录。

Python环境

需要Python 3.6及以上配置,以Linux环境下安装为例,安装依赖环境,输入命令:

bash 复制代码
yum-y install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-devel xz-devel

下载Python3,输入命令:

bash 复制代码
wget https://www.python.org/ftp/python/3.6.1/Python-3.6.1.tgz

安装Python3,在/usr/local/python3目录下,输入命令:

bash 复制代码
mkdir -p /usr/local/python3
tar -zxvf Python-3.6.1.tgz

进入解压后的目录,编译安装,输入命令:

bash 复制代码
cd Python-3.6.1
./configure--prefix=/usr/local/python

建立Python3的软链,输入命令:

bash 复制代码
ln -s /usr/local/python3/bin/python3/usr/bin/python3

将/usr/local/python3/bin加入PATH,输入命令:

bash 复制代码
vim ~/.bash_profile
.bash_profile

获取别名和函数,输入命令:

bash 复制代码
if[-f~/.bashrc];then
.~/.bashrc
fi

增加新环境的目录,输入命令:

bash 复制代码
PATH=$PATH:$HOME/bin:/usr/local/python3/bin
export PATH

按Esc键,输入wq,按回车键退出。使上一步的修改生效,输入命令:

bash 复制代码
source ~/.bash_profile

检查Python3及pip3能否正常使用,输入命令:

bash 复制代码
python3 -V
pip3 -V

TensorFlow环境

安装TensorFlow环境及各种库,升级pip3,输入命令:

bash 复制代码
pip3 install --upgrade pip

查询CUDA版本,输入命令:

bash 复制代码
cat /usr/local/cuda/version.txt

查看CUDA版本,输入命令:

bash 复制代码
cat /usr/local/cuda/include/cudnn.h | grep cuDNN_MAJOR-A 2

安装对应GPU版本的TensorFlow,如图所示。

安装TensorFlow,输入命令:

bash 复制代码
pip3 install tensorflow_gpu==1.4

安装TensorFlow对应的Keras库,输入命令:

bash 复制代码
pip3 install keras=2.2.4

安装其他需要使用的库,输入命令:

bash 复制代码
pip3 install pillow
pip3 install numpy
pip3 install h5py
pip3 install tqdm

安装完毕。

MySQL环境

http://www.mysql.com中下载MySQL安装包,选择Community版本。

选择MySQL Community Server,单击Go to DownloadPage,打开下载界面,选择本地安装包下载,然后直接下载。

打开下载好的安装包,按照默认设置安装MySQL(地址可更改)。在Accounts and Roles处设置root用户名和密码,用于登录数据库。

安装Navicat for MySQL,便于操作数据库。官网地址为:https://navicat.com.cn/products/navicat-for-mysql,按照默认设置安装即可。

当Navicat for MySQL客户端连接到数据库后,鼠标右键"连接名",新建名为catkind的数据库,使用UTF-8编码。

Django环境

下载PyCharm以及Anaconda,完成Python所需环境的配置,本项目使用Python 3.6版本。打开Anaconda Prompt,输入清华仓库镜像,输入命令:

bash 复制代码
conda config--add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config-set show_channel_urls yes

创建Python3.6的环境,名称为TensorFlow,输入命令:

bash 复制代码
conda create -n tensorflow python=3.6

有需要确认的地方,都输入y。

在Anaconda Prompt或者终端中激活TensorFlow环境,输入命令:

bash 复制代码
conda activate tensorflow

安装Django,输入命令:

bash 复制代码
pip install django==1.8.2
pip install pymysql==0.8.0

其他相关博客

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别---深度学习算法应用(含全部工程源码)+数据集+模型(二)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别---深度学习算法应用(含全部工程源码)+数据集+模型(三)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别---深度学习算法应用(含全部工程源码)+数据集+模型(四)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别---深度学习算法应用(含全部工程源码)+数据集+模型(五)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别---深度学习算法应用(含全部工程源码)+数据集+模型(六)

工程源代码下载

详见本人博客资源下载页


其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习------基础知识学习路线,所有资料免关注免套路直接网盘下载

这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

相关推荐
段传涛2 分钟前
AI Prompt Engineering
人工智能·深度学习·prompt
西电研梦11 分钟前
考研倒计时30天丨和西电一起向前!再向前!
人工智能·考研·1024程序员节·西电·西安电子科技大学
南门听露11 分钟前
适用于资源受限IoT系统的非对称语义图像压缩技术
深度学习·神经网络·物联网
催催1217 分钟前
手机领夹麦克风哪个牌子好,哪种领夹麦性价比高,热门麦克风推荐
网络·人工智能·经验分享·其他·智能手机
孤华暗香21 分钟前
吴恩达《提示词工程》(Prompt Engineering for Developers)课程详细笔记
人工智能·笔记·prompt
rommel rain22 分钟前
SpecInfer论文阅读
人工智能·语言模型·transformer
qq_q99225027732 分钟前
django宠物服务管理系统
数据库·django·宠物
Chef_Chen1 小时前
从0开始学习机器学习--Day32--推荐系统作业
人工智能·学习·机器学习
薛定谔的猫ovo1 小时前
基函数、核函数与Kernel trick
人工智能·机器学习
数据小爬虫@1 小时前
如何利用Python爬虫精准获得1688店铺的所有商品信息
开发语言·爬虫·python