Crocoddyl: 多接触最优控制的高效多功能框架

系列文章目录


前言

我们介绍了 Crocoddyl(Contact RObot COntrol by Differential DYnamic Library),这是一个专为高效多触点优化控制(multi-contact optimal control)而定制的开源框架。Crocoddyl 可高效计算给定预定义接触序列(predefined sequence of contacts)的状态轨迹(state trajectory)和控制策略(control policy)。其效率得益于稀疏分析导数(sparse analytical derivatives)的使用、对问题结构的利用以及数据共享。它利用微分几何(differential geometry)来正确描述任何几何系统(如浮动基座系统(floating-base systems))的状态。

此外,我们还提出了一种名为易损微分动态编程(Feasibility-prone Differential Dynamic Programming,FDDP)的新型多重打靶法(multiple-shooting method)。然而,我们的方法并没有增加额外的决策变量(decision variables),而额外的决策变量往往会因因式分解而增加每次迭代的计算时间。与经典的差分动态编程(DDP)算法相比,我们的新方法具有更强的全局化策略。具体来说,我们对经典 DDP 算法提出了两点修改。首先,后向传递接受不可行的状态控制轨迹。其次,在早期的 "探索性 "迭代中,滚动保持间隙开放(这是仅有相等约束的多重射击方法所期望的)。我们用不同的任务展示了我们框架的性能。利用我们的方法,我们可以在几毫秒的时间内计算出腿式机器人的高动态机动性(highly-dynamic maneuvers)(如跳跃(jumping)、前空翻(front-flip))。

Crocoddyl 是一个用于接触序列下机器人控制的最优控制库。它的求解器基于新颖高效的微分动态编程(DDP)算法。Crocoddyl 可计算最佳轨迹和反馈增益。它使用 Pinocchio 快速计算机器人动力学和分析导数。

如果您想了解有关 Crocoddyl 及其求解器的更多信息,我们建议您阅读 [1] [2] [3] 并访问 PUBLICATIONS.md。如果您想了解当前的发展情况并做出贡献,请直接访问开发分支。


一、特点

Crocoddyl 功能多样:

  • 各种最优控制求解器(DDP、FDDP、BoxFDDP、Ipopt 等)
  • 通过 Pinocchio 实现分析和稀疏导数
  • 利用 Pinocchio 支持微分几何
  • 各种积分器、动力学、成本和约束条件
  • 数值微分支持
  • 通过 CppAD 支持自动微分

Crocoddyl 高效灵活:

  • 高速缓存友好
  • 通过 OpenMP 支持多线程
  • 通过 Boost Python 绑定 Python(包括抽象
  • 兼容 C++14/17/20
  • 经过广泛测试
  • 通过 CppADCodeGen 支持自动代码生成

二、安装

Crocoddyl 可以轻松安装在各种 Linux(Ubuntu、Fedora 等)和 Unix 发行版(Mac OS X、BSD 等)上。以下是安装 Crocoddyl 的不同方法。

2.1 Conda

bash 复制代码
   conda install crocoddyl -c conda-forge

2.2 pypi

bash 复制代码
  pip install --user crocoddyl

2.3 ROS

只需将其克隆(使用 --recursive 命令)到 catkin 工作区并编译即可。

2.3.1 📦 从 Debian / Ubuntu 软件包中使用 robotpkg

如果您从未添加过 robotpkg 的软件仓库,现在就添加吧:

bash 复制代码
sudo tee /etc/apt/sources.list.d/robotpkg.list <<EOF
deb [arch=amd64] http://robotpkg.openrobots.org/packages/debian/pub $(lsb_release -sc) robotpkg
EOF

curl http://robotpkg.openrobots.org/packages/debian/robotpkg.key | sudo apt-key add -
sudo apt update

安装 Crocoddyl 及其 Python 绑定:

bash 复制代码
sudo apt install robotpkg-py3\*-crocoddyl

配置环境变量

bash 复制代码
export PATH=/opt/openrobots/bin:$PATH
export PKG_CONFIG_PATH=/opt/openrobots/lib/pkgconfig:$PKG_CONFIG_PATH
export LD_LIBRARY_PATH=/opt/openrobots/lib:$LD_LIBRARY_PATH
export PYTHONPATH=/opt/openrobots/lib/python3.10/site-packages:$PYTHONPATH

三、文档

这里有 Crocoddyl 的 Doxygen 文档。或者,你也可以查看 Jupyter 笔记本。按以下顺序开始

examples/notebooks/unicycle_towards_origin.ipynb

examples/notebooks/cartpole_swing_up.ipynb

examples/notebooks/arm_manipulation.ipynb

examples/notebooks/whole_body_manipulation.ipynb

示例/笔记本/双足行走.ipynb

examples/notebooks/introduction_too_crocoddyl.ipynb

此外,安装完成后,您可以按如下方式运行示例:

bash 复制代码
python -m crocoddyl.examples.quadrupedal_gaits "display" "plot" # enable display and plot

或运行构建目录中的示例、单元测试和基准测试,如

bash 复制代码
cd build
make test
make -s examples-quadrupedal_gaits INPUT="display plot" # enable display and plot
make -s benchmarks-cpp-quadrupedal_gaits INPUT="100 walk" # number of trials ; type of gait

在这里可以使用环境变量来显示和/或绘制由我们的示例生成的图表:

bash 复制代码
export CROCODDYL_DISPLAY=1
export CROCODDYL_PLOT=1

四、引用 Crocoddyl

在学术研究中引用 Crocoddyl 时,请使用以下 BibTeX 行:

复制代码
@inproceedings{mastalli20crocoddyl,
  author={Mastalli, Carlos and Budhiraja, Rohan and Merkt, Wolfgang and Saurel, Guilhem and Hammoud, Bilal
  and Naveau, Maximilien and Carpentier, Justin and Righetti, Ludovic and Vijayakumar, Sethu and Mansard, Nicolas},
  title={{Crocoddyl: An Efficient and Versatile Framework for Multi-Contact Optimal Control}},
  booktitle = {IEEE International Conference on Robotics and Automation (ICRA)},
  year={2020}
}

请考虑引用 PUBLICATIONS.md 中描述的我们的部分出版物和贡献。

Crocoddyl 的贡献不仅限于高效的软件开发。也请考虑引用我们不同求解器和公式的算法贡献:

  • 可行性驱动 DDP (FDDP): [1]
  • 控制受限的可行性驱动 DDP(Box-FDDP): [2]
  • 反动力学轨迹优化和相等约束 DDP 求解器(Intro 求解器): [3]

最后,还请考虑引用 Pinocchio,它为刚体算法及其导数的高效实施做出了贡献。有关如何引用 Pinocchio 的更多详情,请访问:https://github.com/stack-of-tasks/pinocchio。

五、部分出版物

1\] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud, M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar and N. Mansard. [Crocoddyl: An Efficient and Versatile Framework for Multi-Contact Optimal Control](https://cmastalli.github.io/publications/crocoddyl20icra.html "Crocoddyl: An Efficient and Versatile Framework for Multi-Contact Optimal Control"), IEEE International Conference on Robotics and Automation (ICRA), 2020 \[2\] C. Mastalli, W. Merkt, J. Marti-Saumell, H. Ferrolho, J. Sola, N. Mansard and S. Vijayakumar. [A Feasibility-Driven Approach to Control-Limited DDP](https://arxiv.org/pdf/2010.00411.pdf "A Feasibility-Driven Approach to Control-Limited DDP"), Autonomous Robots, 2022 \[3\] C. Mastalli, S. P. Chhatoi, T. Corbères, S. Tonneau and S. Vijayakumar. [Inverse-Dynamics MPC via Nullspace Resolution](https://arxiv.org/pdf/2209.05375.pdf "Inverse-Dynamics MPC via Nullspace Resolution"), IEEE Transactions on Robotics, 2023

相关推荐
赛卡3 小时前
自动驾驶背后的数学:特征提取中的线性变换与非线性激活
人工智能·python·机器学习·自动驾驶·numpy
机器人之树小风5 小时前
3D视觉相机引导机器人的原理
经验分享·科技·机器人
一点人工一点智能14 小时前
HOVER:人形机器人的多功能神经网络全身控制器
机器人·具身智能·足式机器人
宋1381027972014 小时前
Haption Virtuose力反馈设备如何重塑机器人遥操作未来
机器人
Mr.Winter`19 小时前
轨迹优化 | 基于梯度下降的路径规划算法(附ROS C++/Python仿真)
c++·人工智能·算法·机器人·自动驾驶·ros·ros2
极梦网络无忧1 天前
机器人技能列表
机器人
云端源想1 天前
ChatGPT智能聊天机器人实现
chatgpt·机器人
weixi_kelaile5201 天前
智能电话机器人的技术原理是什么?AI语音机器人评判标准是什么?
运维·服务器·人工智能·机器人·语音识别
三无酒1 天前
记录openVLA的LIBERO评估复现过程
机器人
白云千载尽1 天前
LMDrive大语言模型加持的自动驾驶闭环系统 原理与复现过程记录
人工智能·经验分享·python·算法·机器学习·语言模型·自动驾驶