池化层(pooling)

目录

一、池化层

1、最大池化层

2、平均池化层

3、总结

二、代码实现

1、最大池化与平均池化

2、填充和步幅(padding和strides)

3、多个通道

4、总结


一、池化层

1、最大池化层

2、平均池化层

3、总结

  • 池化层返回窗口中最大或平均值
  • 环节卷积层对位置的敏感性
  • 同样有窗口大小、填充和步幅作为超参数

二、代码实现

通常当我们处理图像时,我们希望逐渐降低隐藏表示的空间分辨率、聚集信息,这样随着我们在神经网络中层叠的上升,每个神经元对其敏感的感受野(输入)就越大。

而我们的机器学习任务通常会跟全局图像的问题有关(例如,"图像是否包含一只猫呢?"),所以我们最后一层的神经元应该对整个输入的全局敏感。通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有优势保留在中间层。

1、最大池化与平均池化

在下面的代码中的`pool2d`函数,我们实现池化层的前向传播。然而,这里我们没有卷积核,输出为输入中每个区域的最大值或平均值。

python 复制代码
import torch
from torch import nn
from d2l import torch as d2l
python 复制代码
def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size    # 池化核的尺寸
    Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))   # 由输入尺寸核池化核的尺寸得到输出的尺寸
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':       # 最大池化
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':     # 平均池化
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    return Y

我们可以构建下图中的输入张量`X`,验证二维最大汇聚层的输出。

python 复制代码
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
python 复制代码
tensor([[4., 5.],
        [7., 8.]])

此外,我们还可以验证平均汇聚层。

python 复制代码
pool2d(X, (2, 2), 'avg')
python 复制代码
tensor([[2., 3.],
        [5., 6.]])

2、填充和步幅(padding和strides)

**与卷积层一样,池化层也可以改变输出形状,我们可以通过填充和步幅以获得所需的输出形状。**下面,我们用深度学习框架中内置的二维最大池化层,来演示池化层中填充和步幅的使用。我们首先构造了一个输入张量`X`,它有四个维度,其中样本数和通道数都是1。

python 复制代码
X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4)) # (样本数, 通道数, 高, 宽)
print(X)
python 复制代码
tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]]]])

**默认情况下,深度学习框架中的步幅与池化窗口的大小相同。**因此,如果我们使用形状为`(3, 3)`的汇聚窗口,那么默认情况下,我们得到的步幅形状为`(3, 3)`。

python 复制代码
pool2d = nn.MaxPool2d(3)    # 使用形状为(3, 3)的池化窗口,于是默认使用步幅形状为(3, 3)
pool2d(X)
python 复制代码
tensor([[[[10.]]]])

填充和步幅可以手动设定。

python 复制代码
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
python 复制代码
tensor([[[[ 5.,  7.],
          [13., 15.]]]])

当然,我们可以设定一个任意大小的矩形汇聚窗口,并分别设定填充和步幅的高度和宽度。

python 复制代码
pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
pool2d(X)
python 复制代码
tensor([[[[ 5.,  7.],
          [13., 15.]]]])

3、多个通道

**在处理多通道输入数据时,池化层在每个输入通道上单独运算,而不是像卷积层一样在通道上对输入进行汇总。这意味着池化层的输出通道数与输入通道数相同。**下面,我们将在通道维度上连结张量`X`和`X + 1`,以构建具有2个通道的输入。

python 复制代码
X = torch.cat((X, X + 1), 1)    # 在通道维度叠加,因此是1
print(X)
print(X.shape)
python 复制代码
tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]],

         [[ 1.,  2.,  3.,  4.],
          [ 5.,  6.,  7.,  8.],
          [ 9., 10., 11., 12.],
          [13., 14., 15., 16.]]]])
torch.Size([1, 2, 4, 4])

如下所示,池化后输出通道的数量仍然是2。

python 复制代码
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
print(pool2d(X))
print(X.shape)
python 复制代码
tensor([[[[ 5.,  7.],
          [13., 15.]],

         [[ 6.,  8.],
          [14., 16.]]]])
torch.Size([1, 2, 4, 4])

4、总结

  • 最大池化层会输出该窗口内的最大值,平均池化层会输出该窗口内的平均值。
  • 池化层的主要优点之一是减轻卷积层对位置的过度敏感。
  • 我们可以指定池化层的填充和步幅。
  • 使用最大池化层以及大于1的步幅,可减少空间维度(如高度和宽度)。
  • 池化层的输出通道数与输入通道数相同。
相关推荐
newxtc25 分钟前
【昆明市不动产登记中心-注册安全分析报告】
人工智能·安全
techdashen26 分钟前
圆桌讨论:Coding Agent or AI IDE 的现状和未来发展
ide·人工智能
CV实验室1 小时前
TIP 2025 | 哈工大&哈佛等提出 TripleMixer:攻克雨雪雾干扰的3D点云去噪网络!
人工智能·计算机视觉·3d·论文
余俊晖2 小时前
一套针对金融领域多模态问答的自适应多层级RAG框架-VeritasFi
人工智能·金融·rag
码农阿树3 小时前
视频解析转换耗时—OpenCV优化摸索路
人工智能·opencv·音视频
伏小白白白4 小时前
【论文精度-2】求解车辆路径问题的神经组合优化算法:综合展望(Yubin Xiao,2025)
人工智能·算法·机器学习
应用市场4 小时前
OpenCV编程入门:从零开始的计算机视觉之旅
人工智能·opencv·计算机视觉
楚韵天工4 小时前
宠物服务平台(程序+文档)
java·网络·数据库·spring cloud·编辑器·intellij-idea·宠物
星域智链4 小时前
宠物智能用品:当毛孩子遇上 AI,是便利还是过度?
人工智能·科技·学习·宠物
taxunjishu4 小时前
DeviceNet 转 MODBUS TCP罗克韦尔 ControlLogix PLC 与上位机在汽车零部件涂装生产线漆膜厚度精准控制的通讯配置案例
人工智能·区块链·工业物联网·工业自动化·总线协议