2016年第五届数学建模国际赛小美赛B题直达地铁线路解题全过程文档及程序

2016年第五届数学建模国际赛小美赛

B题 直达地铁线路

原题再现:

在目前的大都市地铁网络中,在两个相距遥远的车站之间运送乘客通常需要很长时间。我们可以建议在两个长途车站之间设置直达班车,以节省长途乘客的时间。
  第一部分:请制定一个数学框架来优化终点站的选择,并评估建议的预期结果。
  第二部分。如果你调整列车间隔或修建直达专线,探索你在经济和社会效益方面可能取得的任何优势。
  第三部分给你所在城市的市长写一封两页的信,总结你的分析。把你的火车时刻表写在信的第二页。

整体求解过程概述(摘要)

本文对影响地铁两站间直达站设置的各个因素进行了模型研究。然后,我们可以确定是否建立一个直接的地铁站之间的两个遥远的车站。如果有必要,我们会对其进行优化。接下来,以北京为例。通过确定路线,给出了在社会经济等多种因素影响下的最佳发车时间。

模型一。首先,采用控制变量法,分析了地铁乘客的个人情况、时间和周围环境对客流的影响。然后利用logit模型对拟合结果进行验证。得出结论:处于工人阶级中间的年轻人经常出现的地区,如工业区、行政区、交通枢纽等,客流最大。通过对北京地铁线路距离的获取,利用数据平均法研究了距离对位置的影响,得出当两站点间直线距离大于15km时,应考虑建立直达地铁。

模型二。基于模型1的结论,采用Floyd算法计算客流和两地距离对地铁位置的影响。发现它们之间的关系成为正态分布和最高点两个站点,其中需要建立地铁直达的站点最好。并以北京市为例,利用该结论得出了首都国际机场3号航站楼地铁站到回龙观地铁站的直达线路。

模型三。通过遗传分析,利用MATLAB对模型二确定的北京线位置进行优化。最后,我们知道当地铁站位于隆泽和回龙观之间时,这个站点是最好的选择。

模型四。通过查阅相关文献,分析了首都国际机场3号航站楼地铁站至回龙观地铁站直达线路的社会效益、经济效益和旅客时间效益。将主成分分析与实证分析相结合,得出不同时段地铁发车间隔时间不同的结论。地铁的运行时间是6:00-23:45。在6:00-10:00和16:00-20:00,每10分钟一班,其余时间15分钟一班。

综上所述,当两站点之间的直线距离大于15km时,尤其是交通枢纽、工业区和行政区,且高峰时段最需要短间隔时间时,应考虑建立直达地铁。

模型假设:

1、不考虑地铁停车系统的需要。

2、假设两个长途车站之间的直达地铁对其他地铁系统没有影响。

3、假设地铁网络的一致性对地铁模型没有影响。

4、假定场地交通功能对本文构建的地铁模型无影响。

5、假设项目成本、效益、技术可行性等因素对第一部分模型无影响6、假设地铁始终准时,不会因外部因素造成延误。

问题重述:

为什么需要在两个相距较远的车站之间更换线路
  在目前大城市的地铁网络中,在两个相距较远的车站之间运送乘客通常需要很长的时间。我们可以建议在两个长途车站之间设置直达班车,以节省长途旅客的时间。

我们需要解决的问题
  1。如何建立一个数学框架来优化终端站的选择?如何评价最佳建议的预期效果?
  2、如何调整列车间隔或建设直达专用线,发挥其经济效益和社会效益?
  3、偿付能力如何处理?
  写一封两页的信给市长,总结我们的分析,简要描述我们的设计特点和优势。

模型的建立与求解整体论文缩略图


全部论文请见下方" 只会建模 QQ名片" 点击QQ名片即可

部分程序代码:(代码和文档not free)

bash 复制代码
function m_main()
clear
clc
Max_gen = 100;
pop_size = 100;
chromsome = 10;
pc = 0.9;
pm = 0.25;
gen = 0;
init = 40*rand(pop_size, chromsome)-20;
pop = init;
fit = obj_fitness(pop);
[max_fit, index_max] = max(fit);
maxfit = max_fit;
[min_fit, index_min] = min(fit);
best_indiv = pop(index_max, :);
while gen<Max_gen
gen = gen+1;
bt(gen) = max_fit;
if maxfit<max_fit;
maxfit = max_fit;
pop(index_min, :) = pop(index_max, :);
best_indiv = pop(index_max, :);
end
best_indiv_tmp(gen) = pop(index_max);
newpop = ga(pop, pc, pm, chromsome, fit);
fit = obj_fitness(newpop);
[max_fit, index_max] = max(fit);
[min_fit, index_min] = min(fit);
pop = newpop;
trace(1, gen) = max_fit;
trace(2, gen) = sum(fit)./length(fit);
end
[f_max gen_ct] = max(bt)
maxfit
best_indiv
hold on
plot(trace(1, :), '.g:');
plot( trace(2, :), '.r-');
title('The experimental results in figure')
xlabel('The number of iterations/generation'), ylabel('The optimal structural');

plot(gen_ct-1, 0:0.1:f_max+1, 'c-');
text(gen_ct, f_max+1, 'The maximum')
hold off
function [fitness] = obj_fitness(pop)
[r c] = size(pop);
x = pop;
fitness = zeros(r, 1);
for i = 1:r
for j = 1:c
fitness(i,1) = fitness(i, 1)+sin(sqrt(abs(40*x(i))))+1-abs(x(i))/20.0;
end
end
end
function newpop = ga(pop, pc, pm, chromsome, fit)
pop_size = size(pop, 1);
ps = fit/sum(fit);
pscum = cumsum(ps);%size(pscum)
r = rand(1, pop_size);
qw = pscum*ones(1, pop_size);
selected = sum(pscum*ones(1, pop_size)<ones(pop_size, 1)*r)+1;
newpop = pop(selected, :);
if pop_size/2 ~= 0
pop_size = pop_size-1;
end
for i = 1:2:pop_size-1
while pc>rand
c_pt = round(8*rand+1);
pop_tp1 = newpop(i, :);pop_tp2 = newpop(i+1, :);
newpop(i+1, 1:c_pt) = pop_tp1(1, 1:c_pt);
newpop(i, c_pt+1:chromsome) = pop_tp2(1, c_pt+1:chromsome);
end
end
for i = 1:pop_size
if pm>rand
m_pt = 1+round(9*rand);
newpop(i, m_pt) = 40*rand-20;
end
end
end
end
f_max =
19.7139
gen_ct =
32
maxfit =
19.7139
best_indiv =
0.0804 -9.8254 -1.1084 19.7403 -8.1866 -13.6728 -17.6449 3.7018
-15.0008 8.797
bash 复制代码
function Z=drawGaussian(u,v,x,y)
% u,vector,expactation;v,covariance matrix
%x=150:0.5:190;
%y=35:110;
[X,Y]=meshgrid(x,y);
DX=v(1,1);
dx=sqrt(DX);
DY=v(2,2);
dy=sqrt(DY);
COV=v(1,2);
r=COV/(dx*dy);
part1=1/(2*pi*dx*dy*sqrt(1-r^2));
p1=-1/(2*(1-r^2));
px=(X-u(1)).^2./DX;
py=(Y-u(2)).^2./DY;
pxy=2*r.*(X-u(1)).*(Y-u(2))./(dx*dy);
Z=part1*exp(p1*(px-pxy+py));
mesh(x,y,Z);
全部论文请见下方" 只会建模 QQ名片" 点击QQ名片即可
相关推荐
统计学小王子15 小时前
数模之路获奖总结——数据分析交流(R语言)
数学建模·数据挖掘·数据分析·r语言
MoRanzhi12032 天前
基于 SciPy 的矩阵运算与线性代数应用详解
人工智能·python·线性代数·算法·数学建模·矩阵·scipy
人大博士的交易之路3 天前
今日行情明日机会——20250926
数学建模·数据分析·缠论·缠中说禅·涨停回马枪
泰迪智能科技3 天前
分享“泰迪杯”数据挖掘挑战赛全新升级——赛题精准对标,搭建 “白名单” 赛事进阶通道
人工智能·数学建模·数据挖掘
贝塔实验室3 天前
ADMM 算法的基本概念
算法·数学建模·设计模式·矩阵·动态规划·软件构建·傅立叶分析
文火冰糖的硅基工坊5 天前
[硬件电路-320]:模拟电路与数字电路,两者均使用晶体管(如BJT、MOSFET),但模拟电路利用其线性区,数字电路利用其开关特性。
单片机·嵌入式硬件·数学建模·fpga开发·系统架构·信号处理
小陈爱建模5 天前
[已更新]2025华为杯E题数学建模研赛E题研究生数学建模思路代码文章成品:高速列车轴承智能故障诊断问题
数学建模
一碗白开水一5 天前
【第30话:路径规划】自动驾驶中Hybrid A星(A*)搜索算法的详细推导及代码示例
人工智能·算法·机器学习·计算机视觉·数学建模·自动驾驶
MATLAB代码顾问5 天前
Python实现海鸥优化算法(Seagull Optimization Algorithm, SOA)(附完整代码)
数学建模
CC数学建模5 天前
2025年中国研究生数学建模竞赛“华为杯”C题 围岩裂隙精准识别与三维模型重构完整高质量成品 思路 代码 结果分享!全网首发!
数学建模·重构