ggplot2 | line plot 分组及均值线:聚类后的表达变化趋势图

1. 效果图

2. 预处理及绘图

# 输入数据
> head(dat)
  Species cid     variable value
1  setosa   1 Sepal.Length   5.1
2  setosa   2 Sepal.Length   4.9
3  setosa   3 Sepal.Length   4.7
4  setosa   4 Sepal.Length   4.6
5  setosa   5 Sepal.Length   5.0
6  setosa   6 Sepal.Length   5.4


# 预处理及绘图
row.num=nrow(iris)
dat=iris[1:row.num,] #假设有4个时间点,最后一列是聚类结果
dat$cid=rownames(dat) #很重要!用于 ggplot 的 group
head(dat)
#宽变长
dat = tidyr::gather(data = dat, key = "variable", value = "value", -c(Species, cid))
# or: 宽变长
#dat=reshape2::melt(dat)

# 限定x轴顺序
dat$variable=factor(dat$variable, levels = c('Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width'))
head(dat)
dim(dat)
ggplot(dat, aes(x=variable, y=value, group=cid, color=Species))+
  geom_hline(yintercept =4, linetype=2, size=0.5) +
  geom_line(size=0.3)+
  stat_summary(aes(group=1),fun.y=mean, geom="line", size=0.8, color="black")+
  facet_wrap(Species~.)+
  labs(x="Stage", y='Expression')+
  theme_bw()+
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        axis.text = element_text(size=8, face = "bold"),
        axis.text.x=element_text(angle=60, hjust=1),
        strip.background = element_rect(fill="white"),
        strip.text = element_text(size = 8, face = "bold"))
相关推荐
枝上棉蛮1 小时前
GISBox VS ArcGIS:分别适用于大型和小型项目的两款GIS软件
arcgis·gis·数据可视化·数据处理·地理信息系统·gis工具箱·gisbox
招风的黑耳12 小时前
Axure大屏可视化模板:赋能各行各业的数据展示与管理
axure·数据可视化·大屏模板
FIT2CLOUD飞致云13 小时前
仪表板展示|DataEase看中国:历年双十一电商销售数据分析
数据分析·开源·数据可视化·dataease·双十一
小馒头学python1 天前
【机器学习】聚类算法分类与探讨
人工智能·python·算法·机器学习·聚类
RestCloud1 天前
如何理解ETLCloud在iPaas中的关键角色
etl·数据可视化·数据集成·数据传输·ipaas·集成工具
B站计算机毕业设计超人2 天前
计算机毕业设计Hadoop+PySpark深度学习游戏推荐系统 游戏可视化 游戏数据分析 游戏爬虫 Scrapy 机器学习 人工智能 大数据毕设
大数据·人工智能·爬虫·spark·课程设计·数据可视化·推荐算法
李恒-聆机智能专精数采3 天前
从零开始了解数采(十二)——汽车锂电池板自动装配线数据采集方案
大数据·数据挖掘·云计算·汽车·边缘计算·制造·数据可视化
界面开发小八哥3 天前
「实战应用」如何用图表控件LightningChart .NET在WPF中制作表格?(一)
.net·wpf·数据可视化·图表控件·图表·lightningchart
青椒大仙KI113 天前
24/11/5 算法笔记 DBSCAN聚类算法
笔记·算法·聚类
pen-ai3 天前
【机器学习】24. 聚类-层次式 Hierarchical Clustering
人工智能·深度学习·算法·机器学习·数据挖掘·聚类