单词接龙[中等]

一、题目

字典wordList中从单词beginWordendWord的 转换序列 是一个按下述规格形成的序列beginWord -> s1 -> s2 -> ... -> sk

1、每一对相邻的单词只差一个字母。

2、对于1 <= i <= k时,每个si都在wordList中。注意,beginWord不需要在wordList中。

3、sk == endWord

给你两个单词beginWordendWord和一个字典wordList,返回从beginWordendWord的最短转换序列中的单词数目 。如果不存在这样的转换序列,返回0

示例 1:

输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]

输出:5

解释:一个最短转换序列是hit->hot-> dot -> dog -> cog, 返回它的长度5

示例 2:

输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]

输出:0

解释:endWord cog不在字典中,所以无法进行转换。

1 <= beginWord.length <= 10
endWord.length == beginWord.length
1 <= wordList.length <= 5000
wordList[i].length == beginWord.length
beginWordendWordwordList[i]由小写英文字母组成
beginWord != endWord
wordList中的所有字符串 互不相同

二、代码

【1】广度优先搜索 + 优化建图: 本题要求的是最短转换序列的长度,看到最短首先想到的就是广度优先搜索。想到广度优先搜索自然而然的就能想到图,但是本题并没有直截了当的给出图的模型,因此我们需要把它抽象成图的模型。我们可以把每个单词都抽象为一个点,如果两个单词可以只改变一个字母进行转换,那么说明他们之间有一条双向边。因此我们只需要把满足转换条件的点相连,就形成了一张图。

基于该图,我们以beginWord为图的起点,以endWord为终点进行广度优先搜索,寻找beginWordendWord的最短路径。

基于上面的思路我们考虑如何编程实现。首先为了方便表示,我们先给每一个单词标号,即给每个单词分配一个id。创建一个由单词wordid对应的映射wordId,并将beginWordwordList中所有的单词都加入这个映射中。之后我们检查endWord是否在该映射内,若不存在,则输入无解。我们可以使用哈希表实现上面的映射关系。

然后我们需要建图,依据朴素的思路,我们可以枚举每一对单词的组合,判断它们是否恰好相差一个字符,以判断这两个单词对应的节点是否能够相连。但是这样效率太低,我们可以优化建图。具体地,我们可以创建虚拟节点。对于单词hit,我们创建三个虚拟节点*ith*thi*,并让hit向这三个虚拟节点分别连一条边即可。如果一个单词能够转化为hit,那么该单词必然会连接到这三个虚拟节点之一。对于每一个单词,我们枚举它连接到的虚拟节点,把该单词对应的id与这些虚拟节点对应的id相连即可。

最后我们将起点加入队列开始广度优先搜索,当搜索到终点时,我们就找到了最短路径的长度。注意因为添加了虚拟节点,所以我们得到的距离为实际最短路径长度的两倍。同时我们并未计算起点对答案的贡献,所以我们应当返回距离的一半再加一的结果。

java 复制代码
class Solution {
    Map<String, Integer> wordId = new HashMap<String, Integer>();
    List<List<Integer>> edge = new ArrayList<List<Integer>>();
    int nodeNum = 0;

    public int ladderLength(String beginWord, String endWord, List<String> wordList) {
        for (String word : wordList) {
            addEdge(word);
        }
        addEdge(beginWord);
        if (!wordId.containsKey(endWord)) {
            return 0;
        }
        int[] dis = new int[nodeNum];
        Arrays.fill(dis, Integer.MAX_VALUE);
        int beginId = wordId.get(beginWord), endId = wordId.get(endWord);
        dis[beginId] = 0;

        Queue<Integer> que = new LinkedList<Integer>();
        que.offer(beginId);
        while (!que.isEmpty()) {
            int x = que.poll();
            if (x == endId) {
                return dis[endId] / 2 + 1;
            }
            for (int it : edge.get(x)) {
                if (dis[it] == Integer.MAX_VALUE) {
                    dis[it] = dis[x] + 1;
                    que.offer(it);
                }
            }
        }
        return 0;
    }

    public void addEdge(String word) {
        addWord(word);
        int id1 = wordId.get(word);
        char[] array = word.toCharArray();
        int length = array.length;
        for (int i = 0; i < length; ++i) {
            char tmp = array[i];
            array[i] = '*';
            String newWord = new String(array);
            addWord(newWord);
            int id2 = wordId.get(newWord);
            edge.get(id1).add(id2);
            edge.get(id2).add(id1);
            array[i] = tmp;
        }
    }

    public void addWord(String word) {
        if (!wordId.containsKey(word)) {
            wordId.put(word, nodeNum++);
            edge.add(new ArrayList<Integer>());
        }
    }
}

时间复杂度: O(N×C^2)。其中NwordList的长度,C为列表中单词的长度。

1、建图过程中,对于每一个单词,我们需要枚举它连接到的所有虚拟节点,时间复杂度为O(C),将这些单词加入到哈希表中,时间复杂度为O(N×C),因此总时间复杂度为O(N×C)

2、广度优先搜索的时间复杂度最坏情况下是O(N×C)。每一个单词需要拓展出O(C)个虚拟节点,因此节点数O(N×C)
空间复杂度: O(N×C^2)。其中NwordList的长度,C为列表中单词的长度。哈希表中包含O(N×C)个节点,每个节点占用空间O(C),因此总的空间复杂度为O(N×C^2)

双向广度优先搜索: 根据给定字典构造的图可能会很大,而广度优先搜索的搜索空间大小依赖于每层节点的分支数量。假如每个节点的分支数量相同,搜索空间会随着层数的增长指数级的增加。考虑一个简单的二叉树,每一层都是满二叉树的扩展,节点的数量会以2为底数呈指数增长。如果使用两个同时进行的广搜可以有效地减少搜索空间。一边从beginWord开始,另一边从endWord开始。我们每次从两边各扩展一层节点,当发现某一时刻两边都访问过同一顶点时就停止搜索。这就是双向广度优先搜索,它可以可观地减少搜索空间大小,从而提高代码运行效率。

java 复制代码
class Solution {
    Map<String, Integer> wordId = new HashMap<String, Integer>();
    List<List<Integer>> edge = new ArrayList<List<Integer>>();
    int nodeNum = 0;

    public int ladderLength(String beginWord, String endWord, List<String> wordList) {
        for (String word : wordList) {
            addEdge(word);
        }
        addEdge(beginWord);
        if (!wordId.containsKey(endWord)) {
            return 0;
        }

        int[] disBegin = new int[nodeNum];
        Arrays.fill(disBegin, Integer.MAX_VALUE);
        int beginId = wordId.get(beginWord);
        disBegin[beginId] = 0;
        Queue<Integer> queBegin = new LinkedList<Integer>();
        queBegin.offer(beginId);
        
        int[] disEnd = new int[nodeNum];
        Arrays.fill(disEnd, Integer.MAX_VALUE);
        int endId = wordId.get(endWord);
        disEnd[endId] = 0;
        Queue<Integer> queEnd = new LinkedList<Integer>();
        queEnd.offer(endId);

        while (!queBegin.isEmpty() && !queEnd.isEmpty()) {
            int queBeginSize = queBegin.size();
            for (int i = 0; i < queBeginSize; ++i) {
                int nodeBegin = queBegin.poll();
                if (disEnd[nodeBegin] != Integer.MAX_VALUE) {
                    return (disBegin[nodeBegin] + disEnd[nodeBegin]) / 2 + 1;
                }
                for (int it : edge.get(nodeBegin)) {
                    if (disBegin[it] == Integer.MAX_VALUE) {
                        disBegin[it] = disBegin[nodeBegin] + 1;
                        queBegin.offer(it);
                    }
                }
            }

            int queEndSize = queEnd.size();
            for (int i = 0; i < queEndSize; ++i) {
                int nodeEnd = queEnd.poll();
                if (disBegin[nodeEnd] != Integer.MAX_VALUE) {
                    return (disBegin[nodeEnd] + disEnd[nodeEnd]) / 2 + 1;
                }
                for (int it : edge.get(nodeEnd)) {
                    if (disEnd[it] == Integer.MAX_VALUE) {
                        disEnd[it] = disEnd[nodeEnd] + 1;
                        queEnd.offer(it);
                    }
                }
            }
        }
        return 0;
    }

    public void addEdge(String word) {
        addWord(word);
        int id1 = wordId.get(word);
        char[] array = word.toCharArray();
        int length = array.length;
        for (int i = 0; i < length; ++i) {
            char tmp = array[i];
            array[i] = '*';
            String newWord = new String(array);
            addWord(newWord);
            int id2 = wordId.get(newWord);
            edge.get(id1).add(id2);
            edge.get(id2).add(id1);
            array[i] = tmp;
        }
    }

    public void addWord(String word) {
        if (!wordId.containsKey(word)) {
            wordId.put(word, nodeNum++);
            edge.add(new ArrayList<Integer>());
        }
    }
}

时间复杂度: O(N×C^2)。其中NwordList的长度,C为列表中单词的长度。

1、建图过程中,对于每一个单词,我们需要枚举它连接到的所有虚拟节点,时间复杂度为O(C),将这些单词加入到哈希表中,时间复杂度为O(N×C),因此总时间复杂度为O(N×C)

2、双向广度优先搜索的时间复杂度最坏情况下是O(N×C)。每一个单词需要拓展出O(C)个虚拟节点,因此节点数O(N×C)

空间复杂度: O(N×C^2)。其中NwordList的长度,C为列表中单词的长度。哈希表中包含O(N×C)个节点,每个节点占用空间O(C),因此总的空间复杂度为O(N×C^2)

相关推荐
军训猫猫头16 分钟前
20.抽卡只有金,带保底(WPF) C#
ui·c#·wpf
A懿轩A16 分钟前
C/C++ 数据结构与算法【数组】 数组详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·数组
古希腊掌管学习的神17 分钟前
[搜广推]王树森推荐系统——矩阵补充&最近邻查找
python·算法·机器学习·矩阵
云边有个稻草人20 分钟前
【优选算法】—复写零(双指针算法)
笔记·算法·双指针算法
半盏茶香21 分钟前
在21世纪的我用C语言探寻世界本质 ——编译和链接(编译环境和运行环境)
c语言·开发语言·c++·算法
忘梓.1 小时前
解锁动态规划的奥秘:从零到精通的创新思维解析(3)
算法·动态规划
Evand J1 小时前
LOS/NLOS环境建模与三维TOA定位,MATLAB仿真程序,可自定义锚点数量和轨迹点长度
开发语言·matlab
LucianaiB1 小时前
探索CSDN博客数据:使用Python爬虫技术
开发语言·爬虫·python
️南城丶北离1 小时前
[数据结构]图——C++描述
数据结构··最小生成树·最短路径·aov网络·aoe网络
Ronin3051 小时前
11.vector的介绍及模拟实现
开发语言·c++