社交媒体用户热词挖掘与情感分析:Python、NLP与Flask的综合应用

社交媒体用户热词挖掘与情感分析:Python、NLP与Flask的综合应用

正文:

社交媒体作为信息传播的主要平台,用户在平台上产生的大量文本数据蕴含着丰富的信息。本文将介绍一种基于Python技术、NLP模型以及Flask框架的社交媒体用户热词挖掘系统,通过爬取社交媒体中的文本数据,实现对微博网站采集到的相关信息的清洗、筛选、分词以及分析,并将分析结果存储到数据库中。

技术应用:

  1. Python技术: 使用Python编写爬虫程序,实现对社交媒体中的文本数据的高效爬取。

  2. NLP模型: 运用自然语言处理(NLP)模型进行文本分词、情感分析等处理,提取用户言论中的关键信息。

  3. Flask框架: 基于Flask框架构建Web应用,实现数据可视化展示、用户交互等功能。

功能特点:

  1. 数据清洗与分词: 对爬取到的社交媒体文本数据进行清洗,去除噪音信息,然后利用NLP技术进行分词,提取关键词汇。

  2. 数据库存储: 将清洗并分析过后的数据存储到数据库中,实现数据的长期保存和管理。

  3. 可视化展示: 利用可视化技术,制作高频词汇的词云,以直观的方式展示当前热点话题,使用户更容易理解和把握信息。

  4. 情感分析: 运用NLP和贝叶斯算法对微博言论进行情感分析,帮助用户更深入了解用户对特定话题的态度和情感倾向。

  5. 大屏可视化: 创新地通过可视化大屏,将分析结果生动地展示给用户,提高数据的沟通效果和用户体验。

创新点:

通过结合Python技术、NLP模型以及Flask框架,本系统实现了对社交媒体用户言论的全方位分析。特别是通过大屏可视化的创新设计,用户可以更生动直观地了解当前热点话题,为用户提供了更加全面的社交媒体数据挖掘体验。这种集成多种技术手段的综合应用,不仅提高了数据处理效率,也为用户提供了更加全面和深入的信息分析服务。

相关推荐
AndrewHZ17 小时前
【图像处理基石】GIS图像处理入门:4个核心算法与Python实现(附完整代码)
图像处理·python·算法·计算机视觉·gis·cv·地理信息系统
q105426175217 小时前
大号B站视频收集
自然语言处理
Mr.Lee jack17 小时前
【vLLM】源码解读:高性能大语言模型推理引擎的工程设计与实现
人工智能·语言模型·自然语言处理
帮帮志17 小时前
目录【系列文章目录】-(关于帮帮志,关于作者)
java·开发语言·python·链表·交互
喜欢吃豆17 小时前
多轮智能对话系统架构方案(可实战):从基础模型到自我优化的对话智能体,数据飞轮的重要性
人工智能·语言模型·自然语言处理·系统架构·大模型·多轮智能对话系统
二王一个今18 小时前
Python打包成exe(windows)或者app(mac)
开发语言·python·macos
一勺菠萝丶18 小时前
Mac 上用 Homebrew 安装 JDK 8(适配 zsh 终端)完整教程
java·python·macos
C嘎嘎嵌入式开发1 天前
(2)100天python从入门到拿捏
开发语言·python
Stanford_11061 天前
如何利用Python进行数据分析与可视化的具体操作指南
开发语言·c++·python·微信小程序·微信公众平台·twitter·微信开放平台
white-persist1 天前
Python实例方法与Python类的构造方法全解析
开发语言·前端·python·原型模式