LeetCode 1954. 收集足够苹果的最小花园周长

一、题目

1、题目描述

给你一个用无限二维网格表示的花园,每一个 整数坐标处都有一棵苹果树。整数坐标 (i, j) 处的苹果树有 |i| + |j| 个苹果。

你将会买下正中心坐标是 (0, 0) 的一块 正方形土地 ,且每条边都与两条坐标轴之一平行。

给你一个整数 neededApples ,请你返回土地的 最小周长 ,使得 至少neededApples 个苹果在土地 里面或者边缘上

|x| 的值定义为:

  • 如果 x >= 0 ,那么值为 x
  • 如果 x < 0 ,那么值为 -x

2、接口描述

复制代码
class Solution {
public:
    long long minimumPerimeter(long long neededApples) {
    }
};

3、原题链接

1954. 收集足够苹果的最小花园周长


二、解题报告

1、思路分析

每个位置是|i| + |j|个苹果,而且限制区域为以原点为中心的正方形,那么一定是有数学规律的。

其实可以分为四个数目相等的区域,为什么呢?

可以由|x| + |y| = k的函数图像得知,也可以观察发现

我们只需要计算出一个区域内的值然后乘4即可

我们设边长2n(由于以原点为中心,所以边长为偶数)

那么对于一个区域来说有n行n+1列

第一行为(n+1) * n / 2,每一行都比前一行多n,显然是首项为(n+1) * n / 2公差为n的等差数列

我们求得一个区域的总数然后乘4即可

sum = 4*n^3 + 6*n^2 + 2*n

2、复杂度

由于log(1000000)大概也就20上下,所以时间复杂度为O(1)

时间复杂度: O(1) 空间复杂度:O(1)

3、代码详解

复制代码
复制代码
class Solution {
public:
    long long minimumPerimeter(long long neededApples) {
        long long l = 1  , r = 1000000 , s = 0 , mid = 0;
        while(l < r)
        {
            mid = (l + r) >> 1;
            s = (4*mid*mid*mid + 6*mid*mid + 2*mid);
            if(s >= neededApples) r = mid;
            else l = mid + 1;
        }
        return r << 3;
    }
};
相关推荐
JANGHIGH10 分钟前
c++ 多线程(三)
开发语言·c++
长安er14 分钟前
LeetCode 34排序数组中查找元素的第一个和最后一个位置-二分查找
数据结构·算法·leetcode·二分查找·力扣
点云SLAM36 分钟前
C++ 中traits 类模板(type traits / customization traits)设计技术深度详解
c++·算法·c++模板·c++高级应用·traits 类模板·c++17、20·c++元信息
CoderYanger41 分钟前
动态规划算法-两个数组的dp(含字符串数组):48.最长重复子数组
java·算法·leetcode·动态规划·1024程序员节
liu****1 小时前
9.二叉树(一)
c语言·开发语言·数据结构·算法·链表
sin_hielo1 小时前
leetcode 3577
数据结构·算法·leetcode
ACERT3331 小时前
04矩阵理论复习-矩阵的分解
算法·矩阵
csuzhucong1 小时前
快餐连锁大亨
算法
水饺编程1 小时前
第3章,[标签 Win32] :处理 WM_PRINT 消息
c语言·c++·windows·visual studio
ssshooter2 小时前
小猫都能懂的大模型原理 1 - 深度学习基础
人工智能·算法·llm