LeetCode 1954. 收集足够苹果的最小花园周长

一、题目

1、题目描述

给你一个用无限二维网格表示的花园,每一个 整数坐标处都有一棵苹果树。整数坐标 (i, j) 处的苹果树有 |i| + |j| 个苹果。

你将会买下正中心坐标是 (0, 0) 的一块 正方形土地 ,且每条边都与两条坐标轴之一平行。

给你一个整数 neededApples ,请你返回土地的 最小周长 ,使得 至少neededApples 个苹果在土地 里面或者边缘上

|x| 的值定义为:

  • 如果 x >= 0 ,那么值为 x
  • 如果 x < 0 ,那么值为 -x

2、接口描述

复制代码
class Solution {
public:
    long long minimumPerimeter(long long neededApples) {
    }
};

3、原题链接

1954. 收集足够苹果的最小花园周长


二、解题报告

1、思路分析

每个位置是|i| + |j|个苹果,而且限制区域为以原点为中心的正方形,那么一定是有数学规律的。

其实可以分为四个数目相等的区域,为什么呢?

可以由|x| + |y| = k的函数图像得知,也可以观察发现

我们只需要计算出一个区域内的值然后乘4即可

我们设边长2n(由于以原点为中心,所以边长为偶数)

那么对于一个区域来说有n行n+1列

第一行为(n+1) * n / 2,每一行都比前一行多n,显然是首项为(n+1) * n / 2公差为n的等差数列

我们求得一个区域的总数然后乘4即可

sum = 4*n^3 + 6*n^2 + 2*n

2、复杂度

由于log(1000000)大概也就20上下,所以时间复杂度为O(1)

时间复杂度: O(1) 空间复杂度:O(1)

3、代码详解

复制代码
复制代码
class Solution {
public:
    long long minimumPerimeter(long long neededApples) {
        long long l = 1  , r = 1000000 , s = 0 , mid = 0;
        while(l < r)
        {
            mid = (l + r) >> 1;
            s = (4*mid*mid*mid + 6*mid*mid + 2*mid);
            if(s >= neededApples) r = mid;
            else l = mid + 1;
        }
        return r << 3;
    }
};
相关推荐
一匹电信狗5 小时前
【LeetCode_547_990】并查集的应用——省份数量 + 等式方程的可满足性
c++·算法·leetcode·职场和发展·stl
鱼跃鹰飞6 小时前
Leetcode会员尊享100题:270.最接近的二叉树值
数据结构·算法·leetcode
Queenie_Charlie6 小时前
小陶的疑惑2
数据结构·c++·树状数组
梵刹古音7 小时前
【C语言】 函数基础与定义
c语言·开发语言·算法
筵陌7 小时前
算法:模拟
算法
Queenie_Charlie7 小时前
小陶与杠铃片
数据结构·c++·树状数组
We་ct7 小时前
LeetCode 205. 同构字符串:解题思路+代码优化全解析
前端·算法·leetcode·typescript
renhongxia18 小时前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归
CoderCodingNo8 小时前
【GESP】C++四级/五级练习题 luogu-P1223 排队接水
开发语言·c++·算法
民乐团扒谱机8 小时前
【AI笔记】精密光时频传递技术核心内容总结
人工智能·算法·光学频率梳