LeetCode 1954. 收集足够苹果的最小花园周长

一、题目

1、题目描述

给你一个用无限二维网格表示的花园,每一个 整数坐标处都有一棵苹果树。整数坐标 (i, j) 处的苹果树有 |i| + |j| 个苹果。

你将会买下正中心坐标是 (0, 0) 的一块 正方形土地 ,且每条边都与两条坐标轴之一平行。

给你一个整数 neededApples ,请你返回土地的 最小周长 ,使得 至少neededApples 个苹果在土地 里面或者边缘上

|x| 的值定义为:

  • 如果 x >= 0 ,那么值为 x
  • 如果 x < 0 ,那么值为 -x

2、接口描述

复制代码
class Solution {
public:
    long long minimumPerimeter(long long neededApples) {
    }
};

3、原题链接

1954. 收集足够苹果的最小花园周长


二、解题报告

1、思路分析

每个位置是|i| + |j|个苹果,而且限制区域为以原点为中心的正方形,那么一定是有数学规律的。

其实可以分为四个数目相等的区域,为什么呢?

可以由|x| + |y| = k的函数图像得知,也可以观察发现

我们只需要计算出一个区域内的值然后乘4即可

我们设边长2n(由于以原点为中心,所以边长为偶数)

那么对于一个区域来说有n行n+1列

第一行为(n+1) * n / 2,每一行都比前一行多n,显然是首项为(n+1) * n / 2公差为n的等差数列

我们求得一个区域的总数然后乘4即可

sum = 4*n^3 + 6*n^2 + 2*n

2、复杂度

由于log(1000000)大概也就20上下,所以时间复杂度为O(1)

时间复杂度: O(1) 空间复杂度:O(1)

3、代码详解

复制代码
复制代码
class Solution {
public:
    long long minimumPerimeter(long long neededApples) {
        long long l = 1  , r = 1000000 , s = 0 , mid = 0;
        while(l < r)
        {
            mid = (l + r) >> 1;
            s = (4*mid*mid*mid + 6*mid*mid + 2*mid);
            if(s >= neededApples) r = mid;
            else l = mid + 1;
        }
        return r << 3;
    }
};
相关推荐
今儿敲了吗几秒前
01|多项式输出
c++·笔记·算法
程序员Jared3 分钟前
C++11—mutex
c++
朔北之忘 Clancy11 分钟前
2025 年 9 月青少年软编等考 C 语言一级真题解析
c语言·开发语言·c++·学习·数学·青少年编程·题解
Xの哲學13 分钟前
深入剖析Linux文件系统数据结构实现机制
linux·运维·网络·数据结构·算法
量子炒饭大师27 分钟前
【C++入门】Cyber底码作用域的隔离协议——【C++命名空间】(using namespace std的原理)
开发语言·c++·dubbo
AlenTech28 分钟前
200. 岛屿数量 - 力扣(LeetCode)
算法·leetcode·职场和发展
C雨后彩虹37 分钟前
竖直四子棋
java·数据结构·算法·华为·面试
REDcker1 小时前
RTCP 刀尖点跟随技术详解
c++·机器人·操作系统·嵌入式·c·数控·机床
楚Y6同学1 小时前
基于 Haversine 公式实现【经纬度坐标点】球面距离计算(C++/Qt 实现)
开发语言·c++·qt·经纬度距离计算
不如自挂东南吱1 小时前
空间相关性 和 怎么捕捉空间相关性
人工智能·深度学习·算法·机器学习·时序数据库