【算法挨揍日记】day40——712. 两个字符串的最小ASCII删除和、718. 最长重复子数组

712. 两个字符串的最小ASCII删除和

712. 两个字符串的最小ASCII删除和

题目描述:

给定两个字符串s1s2,返回 使两个字符串相等所需删除字符的 ASCII值的最小和

解题思路:

算法思路:
正难则反:求两个字符串的最⼩ ASCII 删除和,其实就是找到两个字符串中所有的公共⼦序列
⾥⾯, ASCII 最⼤和。
因此,我们的思路就是按照「最⻓公共⼦序列」的分析⽅式来分析。

  1. 状态表⽰:
    dp[i][j] 表⽰: s1 的 [0, i] 区间以及 s2 的 [0, j] 区间内的所有的⼦序列中,公
    共⼦序列的 ASCII 最⼤和。
  2. 状态转移⽅程:
    对于 dp[i][j] 根据「最后⼀个位置」的元素,结合题⽬要求,分情况讨论:
    i. 当 s1[i] == s2[j] 时:应该先在 s1 的 [0, i - 1] 区间以及 s2 的 [0, j
  • 1] 区间内找⼀个公共⼦序列的最⼤和,然后在它们后⾯加上⼀个 s1[i] 字符即可。
    此时 dp[i][j] = dp[i - 1][j - 1] + s1[i] ;
    ii. 当 s1[i] != s2[j] 时:公共⼦序列的最⼤和会有三种可能:
    • s1 的 [0, i - 1] 区间以及 s2 的 [0, j] 区间内:此时 dp[i][j] =
    dp[i - 1][j] ;
    • s1 的 [0, i] 区间以及 s2 的 [0, j - 1] 区间内:此时 dp[i][j] =
    dp[i][j - 1] ;
    • s1 的 [0, i - 1] 区间以及 s2 的 [0, j - 1] 区间内:此时 dp[i][j]
    = dp[i - 1][j - 1] 。
    但是前两种情况⾥⾯包含了第三种情况,因此仅需考虑前两种情况下的最⼤值即可。
    综上所述,状态转移⽅程为:
    ◦ 当 s1[i - 1] == s2[j - 1] 时, dp[i][j] = dp[i - 1][j - 1] + s1[i] ;
    ◦ 当 s1[i - 1] != s2[j - 1] 时, dp[i][j] = max(dp[i - 1][j], dp[i][j
  • 1])
  1. 初始化:
    a. 「空串」是有研究意义的,因此我们将原始 dp 表的规模多加上⼀⾏和⼀列,表⽰空串。
    b. 引⼊空串后,⼤⼤的「⽅便我们的初始化」。
    c. 但也要注意「下标的映射」关系,以及⾥⾯的值要保证「后续填表是正确的」。
    当 s1 为空时,没有⻓度,同理 s2 也是。因此第⼀⾏和第⼀列⾥⾯的值初始化为 0 即可保证
    后续填表是正确的。
  2. 填表顺序:
    「从上往下」填每⼀⾏,每⼀⾏「从左往右」。
  3. 返回值:
    根据「状态表⽰」,我们不能直接返回 dp 表⾥⾯的某个值:
    i. 先找到 dp[m][n] ,也是最⼤公共 ASCII 和;
    ii. 统计两个字符串的 ASCII 码和 s u m;
    iii. 返回 sum - 2 * dp[m][n] 。

解题代码:

cpp 复制代码
class Solution {
public:
    int minimumDeleteSum(string s1, string s2) {
        int m=s1.size();
        int n=s2.size();
        vector<vector<int>>dp(m+1,vector<int>(n+1,0));
        int sum=0;
        for(int i=0;i<m;i++)sum+=s1[i];
        for(int i=0;i<n;i++)sum+=s2[i];
        for(int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            {
                dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
                if(s1[i-1]==s2[j-1])dp[i][j]=max(dp[i][j],dp[i-1][j-1]+s1[i-1]);
            }
        }
        return sum-2*dp[m][n];
    }
};

718. 最长重复子数组

718. 最长重复子数组

题目描述:

给两个整数数组 nums1nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度

解题思路:

算法思路:
⼦数组是数组中「连续」的⼀段,我们习惯上「以某⼀个位置为结尾」来研究。由于是两个数组,
因此我们可以尝试:以第⼀个数组的 i 位置为结尾以及第⼆个数组的 j 位置为结尾来解决问
题。

  1. 状态表⽰:
    dp[i][j] 表⽰「以第⼀个数组的 i 位置为结尾」,以及「第⼆个数组的 j 位置为结尾」公
    共的 、⻓度最⻓的「⼦数组」的⻓度。
  2. 状态转移⽅程:
    对于 dp[i][j] ,当 nums1[i] == nums2[j] 的时候,才有意义,此时最⻓重复⼦数组的
    ⻓度应该等于 1 加上除去最后⼀个位置时,以 i - 1, j - 1 为结尾的最⻓重复⼦数组的⻓
    度。
    因此,状态转移⽅程为: dp[i][j] = 1 + dp[i - 1][j - 1]
  3. 初始化:
    为了处理「越界」的情况,我们可以添加⼀⾏和⼀列, dp 数组的下标从 1 开始,这样就⽆需初
    始化。
    第⼀⾏表⽰第⼀个数组为空,此时没有重复⼦数组,因此⾥⾯的值设置成 0 即可;
    第⼀列也是同理。
  4. 填表顺序:
    根据「状态转移」,我们需要「从上往下」填每⼀⾏,每⼀⾏「从左往右」。
  5. 返回值:
    根据「状态表⽰」,我们需要返回 dp 表⾥⾯的「最⼤值」。

解题代码:

cpp 复制代码
class Solution {
public:
    int findLength(vector<int>& nums1, vector<int>& nums2) {
        int m=nums1.size();
        int n=nums2.size();
        vector<vector<int>>dp(m+1,vector<int>(n+1,0));
        int ret=0;
        for(int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            {
                if(nums1[i-1]==nums2[j-1])
                    dp[i][j]=dp[i-1][j-1]+1;
                ret=max(ret,dp[i][j]);
            }
        }
        return ret;
    }
};
相关推荐
爱吃生蚝的于勒1 小时前
C语言内存函数
c语言·开发语言·数据结构·c++·学习·算法
ChoSeitaku6 小时前
链表循环及差集相关算法题|判断循环双链表是否对称|两循环单链表合并成循环链表|使双向循环链表有序|单循环链表改双向循环链表|两链表的差集(C)
c语言·算法·链表
DdddJMs__1356 小时前
C语言 | Leetcode C语言题解之第557题反转字符串中的单词III
c语言·leetcode·题解
Fuxiao___6 小时前
不使用递归的决策树生成算法
算法
我爱工作&工作love我6 小时前
1435:【例题3】曲线 一本通 代替三分
c++·算法
白-胖-子7 小时前
【蓝桥等考C++真题】蓝桥杯等级考试C++组第13级L13真题原题(含答案)-统计数字
开发语言·c++·算法·蓝桥杯·等考·13级
workflower7 小时前
数据结构练习题和答案
数据结构·算法·链表·线性回归
好睡凯7 小时前
c++写一个死锁并且自己解锁
开发语言·c++·算法
Sunyanhui17 小时前
力扣 二叉树的直径-543
算法·leetcode·职场和发展
一个不喜欢and不会代码的码农7 小时前
力扣105:从先序和中序序列构造二叉树
数据结构·算法·leetcode