中科院自动化所:基于关系图深度强化学习的机器人多目标包围问题新算法

摘要:中科院自动化所蒲志强教授团队,提出一种基于关系图的深度强化学习方法,应用于多目标避碰包围(MECA)问题,使用NOKOV度量动作捕捉系统获取多机器人位置信息,验证了方法的有效性和适应性。研究成果在2022年ICRA大会发表。

在多机器人系统的研究领域中,包围控制是一个重要的课题。其在民用和军事领域都有广泛的应用场景,包括协同护航、捕获敌方目标、侦察监视、无人水面舰艇巡逻狩猎等。

这些应用的核心问题是如何控制一个多机器人系统,涉及多目标分配,同时解决目标包围和避碰子问题。这是一个巨大的挑战,特别是对于分散的多机器人系统。

中科院自动化所蒲志强教授团队在2022年ICRA大会发表论文,提出了一种基于关系图的深度强化学习方法,对各种条件下的多目标避碰包围(MECA)问题具有良好的适应性。

定义任务

该研究定义了一个MECA任务,即在具有L个静态障碍物(黑色圆圈)的环境中,由N个机器人(绿色圆圈)组成的多机器人系统,协同包围K (1 < K < N)个静止或运动的目标(红色圆圈)。

所有机器人需要自动形成多组,包围所有目标,每组需要形成圆形队形,包围一个独立的目标,同时避免碰撞。这涉及到以下三个子问题:

  1. 动态多目标分配与分组
  2. 每组分别包围目标
  3. 相互之间避免碰撞

方法框架

在MECA问题中,存在三种类型的实体,即机器人、目标和障碍物。不同的实体对机器人有不同的影响关系,例如避障、包围目标、与其他机器人合作等。

研究提出了一种基于机器人级和目标级关系图(RGs)的DRL分散方法,命名为MECA-DRL-RG方法。

具体而言:

  1. 利用图注意网络(GATs)对机器人级RGs进行建模和学习,该RGs由每个机器人与其他机器人、目标和障碍物之间的三个异构关系图组成。

  2. 利用GAT构建目标级RG,构建机器人与各目标之间的空间关系。目标的运动由目标级RG建模,并通过监督学习进行学习,以预测目标的轨迹。

  3. 此外,定义了一个知识嵌入式复合奖励函数,解决MECA中的多目标问题。采用基于集中式训练和去中心化执行框架的演员-评论家训练算法对策略网络进行训练。

实验验证

研究团队分别进行了仿真实验和真实环境实验。在真实实验中,情景设置为:6个机器人在有2个障碍物的环境中包围2个移动的目标。机器人的位置和速度数据由NOKOV度量动作捕捉系统提供。

仿真实验和真实实验都验证了,相比于其他方法,MECA-DRL-RG方法使机器人能够从周围环境中,学习异构空间关系图,并预测目标的轨迹,从而促进每个机器人对其周围环境的理解和预测。证实了MECA-DRL-RG方法的有效性。

并且,无论机器人、障碍物或目标的数量增加,抑或是目标的移动速度加快,MECA-DRL-RG方法都表现出良好的性能,具有广泛的适应性。

参考文献:
T. Zhang, Z. Liu, Z. Pu and J. Yi, "Multi-Target Encirclement with Collision Avoidance via Deep Reinforcement Learning using Relational Graphs," 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 2022, pp. 8794-8800, doi: 10.1109/ICRA46639.2022.9812151.

相关推荐
tinker在coding19 分钟前
Coding Caprice - Linked-List 1
算法·leetcode
XH华5 小时前
初识C语言之二维数组(下)
c语言·算法
南宫生5 小时前
力扣-图论-17【算法学习day.67】
java·学习·算法·leetcode·图论
不想当程序猿_5 小时前
【蓝桥杯每日一题】求和——前缀和
算法·前缀和·蓝桥杯
落魄君子5 小时前
GA-BP分类-遗传算法(Genetic Algorithm)和反向传播算法(Backpropagation)
算法·分类·数据挖掘
菜鸡中的奋斗鸡→挣扎鸡6 小时前
滑动窗口 + 算法复习
数据结构·算法
Lenyiin6 小时前
第146场双周赛:统计符合条件长度为3的子数组数目、统计异或值为给定值的路径数目、判断网格图能否被切割成块、唯一中间众数子序列 Ⅰ
c++·算法·leetcode·周赛·lenyiin
郭wes代码6 小时前
Cmd命令大全(万字详细版)
python·算法·小程序
scan7246 小时前
LILAC采样算法
人工智能·算法·机器学习
菌菌的快乐生活6 小时前
理解支持向量机
算法·机器学习·支持向量机