Pytorch和Tensoflow对比学习第三周--Day 19-20: 数据加载和预处理

这两天的学习重点是掌握在PyTorch和TensorFlow中进行数据加载和预处理的方法。正确的数据处理是训练有效模型的关键步骤。

数据加载和预处理:

学习了如何使用PyTorch的DataLoader和Dataset类以及TensorFlow的数据API来加载和预处理数据。

理解了数据标准化、转换和批处理的重要性。

实践应用:

实现了数据加载管道,包括数据读取、转换和批量加载。

使用标准数据集进行实践,例如MNIST或CIFAR-10。

PyTorch和TensorFlow实现:

在PyTorch中,使用自定义的Dataset类和内置的DataLoader来创建数据加载管道。

在TensorFlow中,利用tf.dataAPI来实现类似的功能。

PyTorch代码示例

from torchvision import datasets, transforms

from torch.utils.data import DataLoader

定义数据转换

transform = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.5,), (0.5,))

])

加载数据集

train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)

train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)

使用train_loader在训练循环中加载数据

TensorFlow代码示例

import tensorflow as tf

定义数据转换函数

def preprocess(image, label):

image = tf.cast(image, tf.float32) / 255.0

image = (image - 0.5) / 0.5 # 标准化

return image, label

加载数据集

(train_images, train_labels), _ = tf.keras.datasets.mnist.load_data()

train_dataset = tf.data.Dataset.from_tensor_slices((train_images, train_labels))

train_dataset = train_dataset.map(preprocess).batch(64).shuffle(10000)

使用train_dataset在训练循环中加载数据

在这两个代码片段中,我们展示了如何在PyTorch和TensorFlow中加载和预处理数据。PyTorch通过Dataset和DataLoader提供了灵活的数据处理方式,而TensorFlow的tf.dataAPI则提供了一种更声明式的方法来构建数据管道。通过实践这些方法,我对数据加载和预处理流程有了更深入的理解,并为后续模型的训练做好了准备。

相关推荐
臭东西的学习笔记3 小时前
论文学习——机器学习引导的蛋白质工程
人工智能·学习·机器学习
大王小生3 小时前
说说CSV文件和C#解析csv文件的几种方式
人工智能·c#·csv·csvhelper·csvreader
m0_462605224 小时前
第G3周:CGAN入门|生成手势图像
人工智能
bubiyoushang8884 小时前
基于LSTM神经网络的短期风速预测实现方案
人工智能·神经网络·lstm
中烟创新4 小时前
烟草专卖文书生成智能体与法规案卷评查智能体获评“年度技术最佳实践奖”
人工智能
得一录4 小时前
大模型中的多模态知识
人工智能·aigc
Github掘金计划4 小时前
Claude Work 开源平替来了:让 AI 代理从“终端命令“变成“产品体验“
人工智能·开源
ghgxm5204 小时前
Fastapi_00_学习方向 ——无编程基础如何用AI实现APP生成
人工智能·学习·fastapi
求真求知的糖葫芦4 小时前
巴伦学习(一)一种新型补偿传输线巴伦论文学习笔记(自用)
笔记·学习·射频工程
沉默-_-5 小时前
力扣hot100滑动窗口(C++)
数据结构·c++·学习·算法·滑动窗口