Pytorch和Tensoflow对比学习第三周--Day 19-20: 数据加载和预处理

这两天的学习重点是掌握在PyTorch和TensorFlow中进行数据加载和预处理的方法。正确的数据处理是训练有效模型的关键步骤。

数据加载和预处理:

学习了如何使用PyTorch的DataLoader和Dataset类以及TensorFlow的数据API来加载和预处理数据。

理解了数据标准化、转换和批处理的重要性。

实践应用:

实现了数据加载管道,包括数据读取、转换和批量加载。

使用标准数据集进行实践,例如MNIST或CIFAR-10。

PyTorch和TensorFlow实现:

在PyTorch中,使用自定义的Dataset类和内置的DataLoader来创建数据加载管道。

在TensorFlow中,利用tf.dataAPI来实现类似的功能。

PyTorch代码示例

from torchvision import datasets, transforms

from torch.utils.data import DataLoader

定义数据转换

transform = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.5,), (0.5,))

])

加载数据集

train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)

train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)

使用train_loader在训练循环中加载数据

TensorFlow代码示例

import tensorflow as tf

定义数据转换函数

def preprocess(image, label):

image = tf.cast(image, tf.float32) / 255.0

image = (image - 0.5) / 0.5 # 标准化

return image, label

加载数据集

(train_images, train_labels), _ = tf.keras.datasets.mnist.load_data()

train_dataset = tf.data.Dataset.from_tensor_slices((train_images, train_labels))

train_dataset = train_dataset.map(preprocess).batch(64).shuffle(10000)

使用train_dataset在训练循环中加载数据

在这两个代码片段中,我们展示了如何在PyTorch和TensorFlow中加载和预处理数据。PyTorch通过Dataset和DataLoader提供了灵活的数据处理方式,而TensorFlow的tf.dataAPI则提供了一种更声明式的方法来构建数据管道。通过实践这些方法,我对数据加载和预处理流程有了更深入的理解,并为后续模型的训练做好了准备。

相关推荐
Yurko132 分钟前
【计网】基于三层交换机和 RIP 协议的局域网组建
网络·学习·计算机网络·智能路由器
lijun_xiao20098 分钟前
Dubbo-学习笔记1
笔记·学习
文心快码 Baidu Comate9 分钟前
双十一将至,用Rules玩转电商场景提效
人工智能·ai编程·文心快码·智能编程助手·comate ai ide
奋斗的牛马15 分钟前
硬件工程师-基础知识电阻(四)
单片机·嵌入式硬件·学习·fpga开发
瞻邈15 分钟前
LION运行笔记
人工智能·深度学习
楼田莉子16 分钟前
Linux学习:进程的控制
linux·运维·服务器·c语言·后端·学习
Serverless 社区39 分钟前
助力企业构建 AI 原生应用,函数计算FunctionAI 重塑模型服务与 Agent 全栈生态
大数据·人工智能
大千AI助手40 分钟前
参考先验(Reference Priors)详解:理论与Python实践
人工智能·机器学习·贝叶斯·大千ai助手·参考先验·贝叶斯推断·先验
Baihai_IDP43 分钟前
面向 LLM 的 GPU 系统工程方法论
人工智能·面试·gpu
北京耐用通信1 小时前
冶金车间“迷雾”重重?耐达讯自动化Profibus转光纤为HMI点亮“透视眼”!
人工智能·物联网·网络协议·网络安全·自动化