Pytorch和Tensoflow对比学习第三周--Day 19-20: 数据加载和预处理

这两天的学习重点是掌握在PyTorch和TensorFlow中进行数据加载和预处理的方法。正确的数据处理是训练有效模型的关键步骤。

数据加载和预处理:

学习了如何使用PyTorch的DataLoader和Dataset类以及TensorFlow的数据API来加载和预处理数据。

理解了数据标准化、转换和批处理的重要性。

实践应用:

实现了数据加载管道,包括数据读取、转换和批量加载。

使用标准数据集进行实践,例如MNIST或CIFAR-10。

PyTorch和TensorFlow实现:

在PyTorch中,使用自定义的Dataset类和内置的DataLoader来创建数据加载管道。

在TensorFlow中,利用tf.dataAPI来实现类似的功能。

PyTorch代码示例

from torchvision import datasets, transforms

from torch.utils.data import DataLoader

定义数据转换

transform = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.5,), (0.5,))

])

加载数据集

train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)

train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)

使用train_loader在训练循环中加载数据

TensorFlow代码示例

import tensorflow as tf

定义数据转换函数

def preprocess(image, label):

image = tf.cast(image, tf.float32) / 255.0

image = (image - 0.5) / 0.5 # 标准化

return image, label

加载数据集

(train_images, train_labels), _ = tf.keras.datasets.mnist.load_data()

train_dataset = tf.data.Dataset.from_tensor_slices((train_images, train_labels))

train_dataset = train_dataset.map(preprocess).batch(64).shuffle(10000)

使用train_dataset在训练循环中加载数据

在这两个代码片段中,我们展示了如何在PyTorch和TensorFlow中加载和预处理数据。PyTorch通过Dataset和DataLoader提供了灵活的数据处理方式,而TensorFlow的tf.dataAPI则提供了一种更声明式的方法来构建数据管道。通过实践这些方法,我对数据加载和预处理流程有了更深入的理解,并为后续模型的训练做好了准备。

相关推荐
GISer_Jing6 分钟前
AI Agent 智能体的“深度思考”与“安全防线”
人工智能·学习·安全·aigc
Coco恺撒31 分钟前
【脑机接口+人工智能】阔别三载,温暖归来
人工智能·经验分享·神经网络·人机交互·创业创新·学习方法
冰西瓜60037 分钟前
从项目入手机器学习——(三)数据预处理(下)自动编码器
人工智能·机器学习
Blossom.11841 分钟前
AI Agent的长期记忆革命:基于向量遗忘曲线的动态压缩系统
运维·人工智能·python·深度学习·自动化·prompt·知识图谱
_codemonster1 小时前
计算机视觉入门到实战系列(十六)基于空间约束的k-means图像分割
人工智能·计算机视觉·kmeans
love530love1 小时前
ComfyUI Hunyuan-3D-2 插件安装问题解决方案
人工智能·windows·python·3d·comfyui·hunyuan-3d-2·pygit2
ldccorpora1 小时前
GALE Phase 1 Chinese Broadcast News Parallel Text - Part 1数据集介绍,官网编号LDC2007T23
人工智能·深度学习·算法·机器学习·自然语言处理
紫小米1 小时前
Agent skill怎么使用?
人工智能·agent·agent skill
Gavin在路上1 小时前
【无标题】
人工智能
ehiway1 小时前
AI芯片技术演进的双轨路径:从通用架构到领域专用的并行演进——指令集优化与电路级重构协同塑造智能计算新生态
人工智能