Pytorch和Tensoflow对比学习第三周--Day 19-20: 数据加载和预处理

这两天的学习重点是掌握在PyTorch和TensorFlow中进行数据加载和预处理的方法。正确的数据处理是训练有效模型的关键步骤。

数据加载和预处理:

学习了如何使用PyTorch的DataLoader和Dataset类以及TensorFlow的数据API来加载和预处理数据。

理解了数据标准化、转换和批处理的重要性。

实践应用:

实现了数据加载管道,包括数据读取、转换和批量加载。

使用标准数据集进行实践,例如MNIST或CIFAR-10。

PyTorch和TensorFlow实现:

在PyTorch中,使用自定义的Dataset类和内置的DataLoader来创建数据加载管道。

在TensorFlow中,利用tf.dataAPI来实现类似的功能。

PyTorch代码示例

from torchvision import datasets, transforms

from torch.utils.data import DataLoader

定义数据转换

transform = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.5,), (0.5,))

])

加载数据集

train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)

train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)

使用train_loader在训练循环中加载数据

TensorFlow代码示例

import tensorflow as tf

定义数据转换函数

def preprocess(image, label):

image = tf.cast(image, tf.float32) / 255.0

image = (image - 0.5) / 0.5 # 标准化

return image, label

加载数据集

(train_images, train_labels), _ = tf.keras.datasets.mnist.load_data()

train_dataset = tf.data.Dataset.from_tensor_slices((train_images, train_labels))

train_dataset = train_dataset.map(preprocess).batch(64).shuffle(10000)

使用train_dataset在训练循环中加载数据

在这两个代码片段中,我们展示了如何在PyTorch和TensorFlow中加载和预处理数据。PyTorch通过Dataset和DataLoader提供了灵活的数据处理方式,而TensorFlow的tf.dataAPI则提供了一种更声明式的方法来构建数据管道。通过实践这些方法,我对数据加载和预处理流程有了更深入的理解,并为后续模型的训练做好了准备。

相关推荐
沃彼特17 小时前
不用任何软件,检测闪存(SD卡U盘)的真实容量检测非常简单的测试方式,没有之一,不会用电脑都会用这个。
人工智能·目标检测·数据挖掘
Baihai_IDP17 小时前
LLM 扩展方式的三年演进之路:复杂之后,回归简单
人工智能·面试·llm
QYR_1117 小时前
CAGR2.9%,全球石英波片市场稳步扩张,中国市场增速领跑
大数据·网络·人工智能
小句17 小时前
MyBatis源码学习
学习·mybatis
2501_9400078617 小时前
论文检测网站全解析:类型、功能与选择指南
人工智能
CoderIsArt17 小时前
Lepton AI 平台完整解析:架构、原理、场景与演示
人工智能·lepton ai
im_AMBER17 小时前
Leetcode 84 水果成篮 | 删除子数组的最大得分
数据结构·c++·笔记·学习·算法·leetcode·哈希算法
大模型真好玩17 小时前
LangGraph1.0速通指南(三)—— LangGraph1.0 自动邮件处理智能体实战
人工智能·langchain·agent
美林数据Tempodata17 小时前
智能体技术应用专业建设方案与实施路径
人工智能·ai·智能体·智能体技术应用·智能体技术应用专业
汽车仪器仪表相关领域17 小时前
ZRT-V 机器人减速器寿命测试系统:精准破解 “寿命焦虑” 的核心测试方案
人工智能·功能测试·机器学习·单元测试·机器人·可用性测试·安全性测试