Pytorch和Tensoflow对比学习第三周--Day 19-20: 数据加载和预处理

这两天的学习重点是掌握在PyTorch和TensorFlow中进行数据加载和预处理的方法。正确的数据处理是训练有效模型的关键步骤。

数据加载和预处理:

学习了如何使用PyTorch的DataLoader和Dataset类以及TensorFlow的数据API来加载和预处理数据。

理解了数据标准化、转换和批处理的重要性。

实践应用:

实现了数据加载管道,包括数据读取、转换和批量加载。

使用标准数据集进行实践,例如MNIST或CIFAR-10。

PyTorch和TensorFlow实现:

在PyTorch中,使用自定义的Dataset类和内置的DataLoader来创建数据加载管道。

在TensorFlow中,利用tf.dataAPI来实现类似的功能。

PyTorch代码示例

from torchvision import datasets, transforms

from torch.utils.data import DataLoader

定义数据转换

transform = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.5,), (0.5,))

])

加载数据集

train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)

train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)

使用train_loader在训练循环中加载数据

TensorFlow代码示例

import tensorflow as tf

定义数据转换函数

def preprocess(image, label):

image = tf.cast(image, tf.float32) / 255.0

image = (image - 0.5) / 0.5 # 标准化

return image, label

加载数据集

(train_images, train_labels), _ = tf.keras.datasets.mnist.load_data()

train_dataset = tf.data.Dataset.from_tensor_slices((train_images, train_labels))

train_dataset = train_dataset.map(preprocess).batch(64).shuffle(10000)

使用train_dataset在训练循环中加载数据

在这两个代码片段中,我们展示了如何在PyTorch和TensorFlow中加载和预处理数据。PyTorch通过Dataset和DataLoader提供了灵活的数据处理方式,而TensorFlow的tf.dataAPI则提供了一种更声明式的方法来构建数据管道。通过实践这些方法,我对数据加载和预处理流程有了更深入的理解,并为后续模型的训练做好了准备。

相关推荐
minhuan15 分钟前
构建AI智能体:九十五、YOLO视觉大模型入门指南:从零开始掌握目标检测
人工智能·yolo·目标检测·计算机视觉·视觉大模型
双翌视觉24 分钟前
机器视觉的车载显示器玻璃覆膜应用
人工智能·机器学习·计算机外设
JEECG低代码平台1 小时前
GitHub 十大 Java 语言 AI 开源项目推荐
java·人工智能·github
T***u3331 小时前
后端缓存技术学习,Redis实战案例
redis·学习·缓存
Cathyqiii1 小时前
传统扩散模型 VS Diffusion-TS
人工智能·算法
海边夕阳20061 小时前
【每天一个AI小知识】:什么是逻辑回归?
人工智能·算法·逻辑回归
Gorgous—l1 小时前
数据结构算法学习:LeetCode热题100-图论篇(岛屿数量、腐烂的橘子、课程表、实现 Trie (前缀树))
数据结构·学习·算法
im_AMBER2 小时前
算法笔记 13 BFS | 图
笔记·学习·算法·广度优先
非著名架构师2 小时前
团雾、结冰、大风——高速公路的“隐形杀手”:智慧气象预警如何为您的路网安全保驾护航
人工智能·新能源风光提高精度·疾风气象大模型4.0·疾风气象大模型·风光功率预测
IT_陈寒2 小时前
Redis深度优化:10个让你的QPS提升50%的关键配置解析
前端·人工智能·后端