Pytorch和Tensoflow对比学习第三周--Day 19-20: 数据加载和预处理

这两天的学习重点是掌握在PyTorch和TensorFlow中进行数据加载和预处理的方法。正确的数据处理是训练有效模型的关键步骤。

数据加载和预处理:

学习了如何使用PyTorch的DataLoader和Dataset类以及TensorFlow的数据API来加载和预处理数据。

理解了数据标准化、转换和批处理的重要性。

实践应用:

实现了数据加载管道,包括数据读取、转换和批量加载。

使用标准数据集进行实践,例如MNIST或CIFAR-10。

PyTorch和TensorFlow实现:

在PyTorch中,使用自定义的Dataset类和内置的DataLoader来创建数据加载管道。

在TensorFlow中,利用tf.dataAPI来实现类似的功能。

PyTorch代码示例

from torchvision import datasets, transforms

from torch.utils.data import DataLoader

定义数据转换

transform = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.5,), (0.5,))

])

加载数据集

train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)

train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)

使用train_loader在训练循环中加载数据

TensorFlow代码示例

import tensorflow as tf

定义数据转换函数

def preprocess(image, label):

image = tf.cast(image, tf.float32) / 255.0

image = (image - 0.5) / 0.5 # 标准化

return image, label

加载数据集

(train_images, train_labels), _ = tf.keras.datasets.mnist.load_data()

train_dataset = tf.data.Dataset.from_tensor_slices((train_images, train_labels))

train_dataset = train_dataset.map(preprocess).batch(64).shuffle(10000)

使用train_dataset在训练循环中加载数据

在这两个代码片段中,我们展示了如何在PyTorch和TensorFlow中加载和预处理数据。PyTorch通过Dataset和DataLoader提供了灵活的数据处理方式,而TensorFlow的tf.dataAPI则提供了一种更声明式的方法来构建数据管道。通过实践这些方法,我对数据加载和预处理流程有了更深入的理解,并为后续模型的训练做好了准备。

相关推荐
拾零吖几秒前
Attention by 3B1B
人工智能·深度学习·机器学习
i***27952 分钟前
【golang学习之旅】使用VScode安装配置Go开发环境
vscode·学习·golang
hd51cc4 分钟前
文档与视图 学习笔记
笔记·学习
钟智强23 分钟前
线性映射(Linear Mapping)原理详解:机器学习中的数学基石
人工智能·算法·机器学习
红尘炼丹客31 分钟前
简析大模型(LLM)技术与量化交易
人工智能·金融
samroom35 分钟前
langchain+ollama+Next.js实现AI对话聊天框
javascript·人工智能·langchain
西西o39 分钟前
面向Agentic Coding的未来:豆包Doubao-Seed-Code模型深度测评与实战
人工智能
行者常至为者常成1 小时前
基于LangGraph的自我改进智能体:Reflection与Reflexion技术详解与实现
人工智能
菠菠萝宝1 小时前
【Java手搓RAGFlow】-9- RAG对话实现
java·开发语言·人工智能·llm·jenkins·openai
小猪佩奇TONY1 小时前
OpenGL-ES 学习(16) ----Pixel Buffer Object
服务器·学习·elasticsearch