Pytorch和Tensoflow对比学习第三周--Day 19-20: 数据加载和预处理

这两天的学习重点是掌握在PyTorch和TensorFlow中进行数据加载和预处理的方法。正确的数据处理是训练有效模型的关键步骤。

数据加载和预处理:

学习了如何使用PyTorch的DataLoader和Dataset类以及TensorFlow的数据API来加载和预处理数据。

理解了数据标准化、转换和批处理的重要性。

实践应用:

实现了数据加载管道,包括数据读取、转换和批量加载。

使用标准数据集进行实践,例如MNIST或CIFAR-10。

PyTorch和TensorFlow实现:

在PyTorch中,使用自定义的Dataset类和内置的DataLoader来创建数据加载管道。

在TensorFlow中,利用tf.dataAPI来实现类似的功能。

PyTorch代码示例

from torchvision import datasets, transforms

from torch.utils.data import DataLoader

定义数据转换

transform = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.5,), (0.5,))

])

加载数据集

train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)

train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)

使用train_loader在训练循环中加载数据

TensorFlow代码示例

import tensorflow as tf

定义数据转换函数

def preprocess(image, label):

image = tf.cast(image, tf.float32) / 255.0

image = (image - 0.5) / 0.5 # 标准化

return image, label

加载数据集

(train_images, train_labels), _ = tf.keras.datasets.mnist.load_data()

train_dataset = tf.data.Dataset.from_tensor_slices((train_images, train_labels))

train_dataset = train_dataset.map(preprocess).batch(64).shuffle(10000)

使用train_dataset在训练循环中加载数据

在这两个代码片段中,我们展示了如何在PyTorch和TensorFlow中加载和预处理数据。PyTorch通过Dataset和DataLoader提供了灵活的数据处理方式,而TensorFlow的tf.dataAPI则提供了一种更声明式的方法来构建数据管道。通过实践这些方法,我对数据加载和预处理流程有了更深入的理解,并为后续模型的训练做好了准备。

相关推荐
sali-tec16 小时前
C# 基于halcon的视觉工作流-章62 点云采样
开发语言·图像处理·人工智能·算法·计算机视觉
EAIReport16 小时前
通过数据分析自动化产品实现AI生成PPT的完整流程
人工智能·数据分析·自动化
swanwei17 小时前
量子科技对核心产业的颠覆性影响及落地时间表(全文2500字)
大数据·网络·人工智能·程序人生·量子计算
AKAMAI17 小时前
从 Cloudflare 服务中断,看建立多维度风险应对机制的必要
人工智能·云原生·云计算
道可云17 小时前
道可云人工智能每日资讯|2025青岛虚拟现实创新大会即将举行
人工智能·vr
酷雷曼VR全景17 小时前
身边的变化丨从“尝鲜”到“刚需”,VR全景让生活“立体化”
人工智能·生活·vr·vr全景·酷雷曼·合作商
m0_6501082417 小时前
Flamingo:打破模态壁垒的少样本视觉语言模型
论文阅读·人工智能·视觉语言模型·deepmind·vlm·通用智能·通用小样本适配
gorgeous(๑>؂<๑)17 小时前
【ICLR26匿名投稿】Context-Aware ViT:让目标检测真正“看清上下文”的增强策略
人工智能·目标检测·机器学习·计算机视觉·目标跟踪
AI大模型学徒17 小时前
NLP基础(七)_文本分析与关键词提取
人工智能·自然语言处理
汤姆yu17 小时前
基于深度学习的健康饮食推荐系统
人工智能·深度学习