傅里叶变换以及滤波的理解和使用方法解释

目录

简单介绍

原理介绍

低频滤波器原理:(只保留低频,让图像模糊)

高频滤波器原理:(只保留高频,让图像细节增强)

实例代码

低频滤波器处理

高频滤波器处理


简单介绍

傅里叶变换操作就是把时域变成了频域,操作起来更加的方便,而且效率也更快

时域:我们生活中做事情都是用时间指定的,什么时候做什么事情 以时间为参照

频域:所有东西都是静止的 不以时间为参照

傅里叶变换概述:

  • 高频:变化剧烈的灰度分量,例如边界

  • 低频:变化缓慢的灰度分量,例如不是边界的地方

例如我们这张图片


滤波

  • 低通滤波器:只保留低频,让图像模糊,即边界模糊了

  • 高通滤波器:只保留高频,让图像细节增强,即保留了边界


原理介绍

根本:是利用了我们的mask(遮罩层)来保留我们所需要的频率

低频滤波器原理:(只保留低频,让图像模糊)

图片上少了一步,最后还要让我们的低频重新回到左上角,再还原图片, 保证图片整体不会变


高频滤波器原理:(只保留高频,让图像细节增强 )


区别:

低频滤波器和高频滤波器的区别仅仅是定义我们以原点为中心的遮罩层mask的时候是用0还是1来初始化

  • 用0初始化为低频滤波器 保留低频,舍弃高频
  • 用1初始化为高频滤波器 保留高频,舍弃低频

实例代码

注意点:

  • opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32 格式。
  • cv2.dft()傅里叶变换
  • cv2.idft()反傅里叶变换
python 复制代码
img = cv2.imread('hui.jpg',0)

img_float32 = np.float32(img)
  • 得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,可以通过shift变换来实现。
python 复制代码
np.fft.fftshift()
  • cv2.dft()返回的结果是双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0,255)。
python 复制代码
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

低频滤波器处理

python 复制代码
import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('hui.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置

# 低通滤波
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1

# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()

高频滤波器处理

python 复制代码
import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('hui.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置

# 高通滤波
mask = np.ones((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 0

# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()
相关推荐
红衣小蛇妖10 分钟前
神经网络-Day45
人工智能·深度学习·神经网络
weixin_5275504011 分钟前
初级程序员入门指南
javascript·python·算法
JoannaJuanCV27 分钟前
BEV和OCC学习-5:数据预处理流程
深度学习·目标检测·3d·occ·bev
KKKlucifer27 分钟前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
DisonTangor1 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc
嘉陵妹妹2 小时前
深度优先算法学习
学习·算法·深度优先
老胖闲聊2 小时前
Python Rio 【图像处理】库简介
开发语言·图像处理·python
GalaxyPokemon2 小时前
LeetCode - 53. 最大子数组和
算法·leetcode·职场和发展
浠寒AI3 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
hn小菜鸡3 小时前
LeetCode 1356.根据数字二进制下1的数目排序
数据结构·算法·leetcode