傅里叶变换以及滤波的理解和使用方法解释

目录

简单介绍

原理介绍

低频滤波器原理:(只保留低频,让图像模糊)

高频滤波器原理:(只保留高频,让图像细节增强)

实例代码

低频滤波器处理

高频滤波器处理


简单介绍

傅里叶变换操作就是把时域变成了频域,操作起来更加的方便,而且效率也更快

时域:我们生活中做事情都是用时间指定的,什么时候做什么事情 以时间为参照

频域:所有东西都是静止的 不以时间为参照

傅里叶变换概述:

  • 高频:变化剧烈的灰度分量,例如边界

  • 低频:变化缓慢的灰度分量,例如不是边界的地方

例如我们这张图片


滤波

  • 低通滤波器:只保留低频,让图像模糊,即边界模糊了

  • 高通滤波器:只保留高频,让图像细节增强,即保留了边界


原理介绍

根本:是利用了我们的mask(遮罩层)来保留我们所需要的频率

低频滤波器原理:(只保留低频,让图像模糊)

图片上少了一步,最后还要让我们的低频重新回到左上角,再还原图片, 保证图片整体不会变


高频滤波器原理:(只保留高频,让图像细节增强 )


区别:

低频滤波器和高频滤波器的区别仅仅是定义我们以原点为中心的遮罩层mask的时候是用0还是1来初始化

  • 用0初始化为低频滤波器 保留低频,舍弃高频
  • 用1初始化为高频滤波器 保留高频,舍弃低频

实例代码

注意点:

  • opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32 格式。
  • cv2.dft()傅里叶变换
  • cv2.idft()反傅里叶变换
python 复制代码
img = cv2.imread('hui.jpg',0)

img_float32 = np.float32(img)
  • 得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,可以通过shift变换来实现。
python 复制代码
np.fft.fftshift()
  • cv2.dft()返回的结果是双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0,255)。
python 复制代码
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

低频滤波器处理

python 复制代码
import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('hui.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置

# 低通滤波
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1

# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()

高频滤波器处理

python 复制代码
import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('hui.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置

# 高通滤波
mask = np.ones((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 0

# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()
相关推荐
Coder_Boy_15 分钟前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱2 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º4 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee6 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
你撅嘴真丑6 小时前
第九章-数字三角形
算法
聆风吟º6 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys7 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56787 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子7 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
ValhallaCoder7 小时前
hot100-二叉树I
数据结构·python·算法·二叉树