傅里叶变换以及滤波的理解和使用方法解释

目录

简单介绍

原理介绍

低频滤波器原理:(只保留低频,让图像模糊)

高频滤波器原理:(只保留高频,让图像细节增强)

实例代码

低频滤波器处理

高频滤波器处理


简单介绍

傅里叶变换操作就是把时域变成了频域,操作起来更加的方便,而且效率也更快

时域:我们生活中做事情都是用时间指定的,什么时候做什么事情 以时间为参照

频域:所有东西都是静止的 不以时间为参照

傅里叶变换概述:

  • 高频:变化剧烈的灰度分量,例如边界

  • 低频:变化缓慢的灰度分量,例如不是边界的地方

例如我们这张图片


滤波

  • 低通滤波器:只保留低频,让图像模糊,即边界模糊了

  • 高通滤波器:只保留高频,让图像细节增强,即保留了边界


原理介绍

根本:是利用了我们的mask(遮罩层)来保留我们所需要的频率

低频滤波器原理:(只保留低频,让图像模糊)

图片上少了一步,最后还要让我们的低频重新回到左上角,再还原图片, 保证图片整体不会变


高频滤波器原理:(只保留高频,让图像细节增强 )


区别:

低频滤波器和高频滤波器的区别仅仅是定义我们以原点为中心的遮罩层mask的时候是用0还是1来初始化

  • 用0初始化为低频滤波器 保留低频,舍弃高频
  • 用1初始化为高频滤波器 保留高频,舍弃低频

实例代码

注意点:

  • opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32 格式。
  • cv2.dft()傅里叶变换
  • cv2.idft()反傅里叶变换
python 复制代码
img = cv2.imread('hui.jpg',0)

img_float32 = np.float32(img)
  • 得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,可以通过shift变换来实现。
python 复制代码
np.fft.fftshift()
  • cv2.dft()返回的结果是双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0,255)。
python 复制代码
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

低频滤波器处理

python 复制代码
import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('hui.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置

# 低通滤波
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1

# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()

高频滤波器处理

python 复制代码
import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('hui.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置

# 高通滤波
mask = np.ones((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 0

# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()
相关推荐
Z1Jxxx1 分钟前
日期日期日期
开发语言·c++·算法
万行7 分钟前
机器学习&第五章生成式生成器
人工智能·python·算法·机器学习
独自破碎E8 分钟前
介绍一下Spring AI框架
java·人工智能·spring
laplace01239 分钟前
第三章 大语言模型基础
人工智能·语言模型·自然语言处理·agent·rag
罗湖老棍子10 分钟前
【模板】并查集(洛谷P3367)
算法·图论·并查集
_OP_CHEN16 分钟前
【算法基础篇】(四十五)裴蜀定理与扩展欧几里得算法:从不定方程到数论万能钥匙
算法·蓝桥杯·数论·算法竞赛·裴蜀定理·扩展欧几里得算法·acm/icpc
Lun3866buzha20 分钟前
轮胎胎面花纹识别与分类:基于solo_r50_fpn模型的实现与优化
人工智能·分类·数据挖掘
没学上了20 分钟前
VLM-单头自注意力机制核心逻辑
人工智能·pytorch·深度学习
zhangdawei83820 分钟前
英伟达GB200,GB300和普通服务器如dell R740xd有什么区别?
运维·服务器·人工智能
Mintopia21 分钟前
意图OS是未来软件形态,它到底解决了什么问题?
人工智能·react native·前端工程化