傅里叶变换以及滤波的理解和使用方法解释

目录

简单介绍

原理介绍

低频滤波器原理:(只保留低频,让图像模糊)

高频滤波器原理:(只保留高频,让图像细节增强)

实例代码

低频滤波器处理

高频滤波器处理


简单介绍

傅里叶变换操作就是把时域变成了频域,操作起来更加的方便,而且效率也更快

时域:我们生活中做事情都是用时间指定的,什么时候做什么事情 以时间为参照

频域:所有东西都是静止的 不以时间为参照

傅里叶变换概述:

  • 高频:变化剧烈的灰度分量,例如边界

  • 低频:变化缓慢的灰度分量,例如不是边界的地方

例如我们这张图片


滤波

  • 低通滤波器:只保留低频,让图像模糊,即边界模糊了

  • 高通滤波器:只保留高频,让图像细节增强,即保留了边界


原理介绍

根本:是利用了我们的mask(遮罩层)来保留我们所需要的频率

低频滤波器原理:(只保留低频,让图像模糊)

图片上少了一步,最后还要让我们的低频重新回到左上角,再还原图片, 保证图片整体不会变


高频滤波器原理:(只保留高频,让图像细节增强 )


区别:

低频滤波器和高频滤波器的区别仅仅是定义我们以原点为中心的遮罩层mask的时候是用0还是1来初始化

  • 用0初始化为低频滤波器 保留低频,舍弃高频
  • 用1初始化为高频滤波器 保留高频,舍弃低频

实例代码

注意点:

  • opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32 格式。
  • cv2.dft()傅里叶变换
  • cv2.idft()反傅里叶变换
python 复制代码
img = cv2.imread('hui.jpg',0)

img_float32 = np.float32(img)
  • 得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,可以通过shift变换来实现。
python 复制代码
np.fft.fftshift()
  • cv2.dft()返回的结果是双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0,255)。
python 复制代码
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

低频滤波器处理

python 复制代码
import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('hui.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置

# 低通滤波
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1

# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()

高频滤波器处理

python 复制代码
import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('hui.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置

# 高通滤波
mask = np.ones((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 0

# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()
相关推荐
Jerryhut3 分钟前
Bev感知特征空间算法
人工智能
xian_wwq14 分钟前
【学习笔记】基于人工智能的火电机组全局性能一体化优化研究
人工智能·笔记·学习·火电
春风LiuK26 分钟前
虚实无界:VRAR如何重塑课堂与突破研究边界
人工智能·程序人生
Ayanami_Reii35 分钟前
区间不同数的个数-树状数组/线段树/莫队/主席树
数据结构·c++·算法·线段树·树状数组·主席树·莫队
李玮豪Jimmy44 分钟前
Day37:动态规划part10(300.最长递增子序列、674.最长连续递增序列 、718.最长重复子数组)
算法·动态规划
歌_顿1 小时前
Embedding 模型word2vec/glove/fasttext/elmo/doc2vec/infersent学习总结
人工智能·算法
胡萝卜3.01 小时前
深入C++可调用对象:从function包装到bind参数适配的技术实现
开发语言·c++·人工智能·机器学习·bind·function·包装器
Echo_NGC22371 小时前
【KL 散度】深入理解 Kullback-Leibler Divergence:AI 如何衡量“像不像”的问题
人工智能·算法·机器学习·散度·kl
愤怒的可乐1 小时前
从零构建大模型智能体:OpenAI Function Calling智能体实战
人工智能·大模型·智能体
XiaoMu_0011 小时前
基于深度学习的农作物叶片病害智能识别与防治系统
人工智能·深度学习