多维时序 | Matlab实现GWO-TCN-Multihead-Attention灰狼算法优化时间卷积网络结合多头注意力机制多变量时间序列预测

多维时序 | Matlab实现GWO-TCN-Multihead-Attention灰狼算法优化时间卷积网络结合多头注意力机制多变量时间序列预测

目录

    • [多维时序 | Matlab实现GWO-TCN-Multihead-Attention灰狼算法优化时间卷积网络结合多头注意力机制多变量时间序列预测](#多维时序 | Matlab实现GWO-TCN-Multihead-Attention灰狼算法优化时间卷积网络结合多头注意力机制多变量时间序列预测)

效果一览




基本介绍

1.Matlab实现GWO-TCN-Multihead-Attention灰狼算法优化时间卷积网络结合多头注意力机制多变量时间序列预测(完整源码和数据)

2.运行环境为Matlab2023b;

3.excel数据集,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MAE、 MBE、MAPE、 RMSE多指标评价。

程序设计

  • 完整源码和数据获取方式私信回复Matlab实现GWO-TCN-Multihead-Attention灰狼算法优化时间卷积网络结合多头注意力机制多变量时间序列预测
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res =xlsread('data.xlsx','sheet1','A2:H104');

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例

num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

f_ = size(P_train, 1);                  % 输入特征维度

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129215161 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关推荐
机器学习之心9 天前
分类预测 | Matlab实现BO-LSTM-Attention多特征分类预测
matlab·分类·lstm·attention·bo-lstm
zbdx不知名菜鸡12 天前
self Attention为何除以根号dk?(全新角度)
transformer·attention·概率论
爱听歌的周童鞋17 天前
Flash Attention原理讲解
attention·self-attention·flash attention
AINLPer20 天前
Attention又升级!Moonshot | 提出MoE注意力架构:MoBA,提升LLM长文本推理效率
attention
xidianjiapei0011 个月前
5分钟速览深度学习经典论文 —— attention is all you need
人工智能·深度学习·transformer·attention·论文解读
爱听歌的周童鞋1 个月前
DeepSeek MLA(Multi-Head Latent Attention)算法浅析
attention·gqa·deepseek·mla
开出南方的花2 个月前
DeepSeek模型架构及优化内容
人工智能·pytorch·深度学习·机器学习·架构·nlp·attention
SpikeKing2 个月前
LeetCode - Google 大模型校招10题 第1天 Attention 汇总 (3题)
leetcode·llm·attention·multihead·groupquery·kvcache
机器学习之心3 个月前
WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型对比多变量时序预测
attention·cnn-gru·woa-cnn-gru·四模型对比多变量时序预测