决策树(Python)

决策树(Decision Tree)

为达到目标,根据一定的条件进行选择的过程,就是决策树,常用于分类

构成元素是结点和边

  • 结点:根据样本的特征作出判断,根节点、叶节点。
  • 边:指示方向。

衡量标准------熵

这里熵表示样本种类的丰富性,样本种类越多越混乱,熵越大;假若全部属于同一类,则熵等于零。

构造的基本思路

随着层数增加,让熵快速降低,降低速率越快,效率越高。

缺点------过拟合

解决------剪枝

  1. 预剪枝:达某条件就停止
  2. 后剪枝:先得树,再加上限制条件(如叶节点个数)进行剪枝。

Python代码

python 复制代码
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
import pandas as pd

# 读取数据
data = pd.read_csv('data.csv')

# 假设数据中的最后一列是目标变量,其余列是特征
X = data.iloc[:, :-1]
y = data.iloc[:, -1]

# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建决策树分类器
dt_classifier = DecisionTreeClassifier(random_state=42)

# 训练模型
dt_classifier.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = dt_classifier.predict(X_test)
print(y_pred)
print(y_test)
# 评估模型准确性
accuracy = accuracy_score(y_test, y_pred)
print(f'Model Accuracy: {accuracy}')

附:构造样例数据的实例代码

python 复制代码
# 以通过学生的数学和英语成绩预测是否通过为例
import pandas as pd
import numpy as np
df = pd.DataFrame({
    'Math_Score': [np.random.randint(40, 101) for x1 in range(100)],
    'English_Score': [np.random.randint(40, 101) for x2 in range(100)],
    'Pass': [np.random.randint(0, 2) for x3 in range(100)],
})
df.to_csv('data.csv')
相关推荐
九圣残炎3 分钟前
【从零开始的LeetCode-算法】1456. 定长子串中元音的最大数目
java·算法·leetcode
lulu_gh_yu8 分钟前
数据结构之排序补充
c语言·开发语言·数据结构·c++·学习·算法·排序算法
丫头,冲鸭!!!28 分钟前
B树(B-Tree)和B+树(B+ Tree)
笔记·算法
Re.不晚32 分钟前
Java入门15——抽象类
java·开发语言·学习·算法·intellij-idea
艾派森1 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
为什么这亚子1 小时前
九、Go语言快速入门之map
运维·开发语言·后端·算法·云原生·golang·云计算
2 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
~yY…s<#>2 小时前
【刷题17】最小栈、栈的压入弹出、逆波兰表达式
c语言·数据结构·c++·算法·leetcode
忘梓.2 小时前
划界与分类的艺术:支持向量机(SVM)的深度解析
机器学习·支持向量机·分类
Chef_Chen2 小时前
从0开始机器学习--Day17--神经网络反向传播作业
python·神经网络·机器学习