马尔科夫链
一、常见的马尔可夫过程:
(1) 独立随机过程为马尔可夫过程。
(2) 独立增量过程为马尔可夫过程:没{X(t),t∈[0,+∞)}为一独立增量过程,且有P(X(0)=x0)=1,x0为常数,则X(t)为马尔可夫过程。
(3) 泊松过程为马尔可夫过程。
(4) 维纳过程为马尔可夫过程。
(5) 质点随机游动过程为马尔可夫过程。
二、模型的创立条件
python
import numpy as np
def markov():
init_array = np.array([0.1,0.2,0.7])
transfer_matrix = np.array([
[0.9, 0.075, 0.025],
[0.15,0.8,0.05],
[0.25,0.25,0.5],
])
restmp = init_array
for i in range(25):
res = np.dot(restmp, transfer_matrix)
print(i,"\t",res)
restmp = res
markov()
bash
0 [0.295 0.3425 0.3625]
1 [0.4075 0.38675 0.20575]
2 [0.4762 0.3914 0.1324]
3 [0.52039 0.381935 0.097675]
4 [0.55006 0.368996 0.080944]
5 [0.5706394 0.3566873 0.0726733]
6 [0.58524688 0.34631612 0.068437 ]
7 [0.59577886 0.33805566 0.06616548]
8 [0.60345069 0.33166931 0.06487999]
9 [0.60907602 0.32681425 0.06410973]
15 [0.62236841 0.31490357 0.06272802]
16 [0.62304911 0.31428249 0.0626684 ]
17 [0.62355367 0.31382178 0.06262455]
18 [0.62392771 0.31348008 0.06259221]
19 [0.624205 0.3132267 0.0625683]
20 [0.62441058 0.31303881 0.06255061]
21 [0.624563 0.31289949 0.06253751]
22 [0.624676 0.3127962 0.0625278]
23 [0.62475978 0.31271961 0.06252061]
24 [0.6248219 0.31266282 0.06251528]
会收敛于:
[0.6248219 0.31266282 0.06251528]
如果我们换一个初始状态t0,比如[0.2,0.3.0.5],继续运行上面的代码,只是将init_array变一下,最后结果为:
init_array = np.array([0.2,0.3.0.5])
0 [0.35 0.38 0.27]
1 [0.4395 0.39775 0.16275]
2 [0.4959 0.39185 0.11225]
3 [0.53315 0.378735 0.088115]
4 [0.558674 0.365003 0.076323]
5 [0.5766378 0.3529837 0.0703785]
6 [0.5895162 0.34322942 0.06725438]
7 [0.59886259 0.33561085 0.06552657]
8 [0.6056996 0.32978501 0.06451539]
9 [0.61072624 0.32538433 0.06388944]
10 [0.61443362 0.32208429 0.06348209]
11 [0.61717343 0.31962047 0.0632061 ]
12 [0.61920068 0.31778591 0.06301341]
13 [0.62070185 0.31642213 0.06287602]
14 [0.62181399 0.31540935 0.06277666]
15 [0.62263816 0.31465769 0.06270415]
16 [0.62324903 0.31410005 0.06265091]
17 [0.62370187 0.31368645 0.06261168]
18 [0.62403757 0.31337972 0.06258271]
19 [0.62428645 0.31315227 0.06256128]
20 [0.62447096 0.31298362 0.06254542]
21 [0.62460776 0.31285857 0.06253366]
22 [0.62470919 0.31276586 0.06252495]
23 [0.62478439 0.31269711 0.0625185 ]
24 [0.62484014 0.31264614 0.06251372]
24 [0.6248219 0.31266282 0.06251528]
也就是状态转移的概率确定的前提下,和初始概率无关,