C#,广义斐波那契数(Generalised Fibonacci Numbers)的算法

广义斐波那契序列(generalized Fibonacci sequence)是斐波那契数的推广。由递推关系F₁=F₂=...=Fm-1=0,Fₘ=1,Fm+n=Fₙ+Fn+1+...+Fn+m+1,n≥1所产生的序列,称为m级广义斐波那契序列。

计算结果:

源代码:

1 文本格式

using System;

namespace Legalsoft.Truffer.Algorithm

{

/// <summary>

/// 广义斐波那契数

/// Generalised Fibonacci Numbers

/// </summary>

public static partial class Number_Sequence

{

/// <summary>

/// 广义斐波那契数的算法

/// </summary>

/// <param name="N"></param>

/// <param name="a"></param>

/// <param name="b"></param>

/// <param name="m"></param>

/// <param name="n"></param>

/// <returns></returns>

public static int Generalized_Fibonacci_Number(int N, int a, int b, int m, int n)

{

int[,] F = { { m, 1 }, { n, 0 } };

if (N == 0)

{

return a;

}

if (N == 1)

{

return b;

}

if (N == 2)

{

return m * b + n * a;

}

int[,] initial = { { m * b + n * a, b }, { b, a } };

GFN_Power(ref F, N - 2, m, n);

Fib_Multiply(ref initial, F);

return F[0, 0];

}

/// <summary>

/// 2x2矩阵乘法

/// </summary>

/// <param name="F"></param>

/// <param name="M"></param>

static void Fib_Multiply(ref int[,] F, int[,] M)

{

int x = F[0, 0] * M[0, 0] + F[0, 1] * M[1, 0];

int y = F[0, 0] * M[0, 1] + F[0, 1] * M[1, 1];

int z = F[1, 0] * M[0, 0] + F[1, 1] * M[1, 0];

int w = F[1, 0] * M[0, 1] + F[1, 1] * M[1, 1];

F[0, 0] = x;

F[0, 1] = y;

F[1, 0] = z;

F[1, 1] = w;

}

private static void GFN_Power(ref int[,] F, int N, int m, int n)

{

int[,] M = { { m, 1 }, { n, 0 } };

for (int i = 1; i <= N; i++)

{

Fib_Multiply(ref F, M);

}

}

}

}


POWER BY TRUFFER.CN

2 代码格式

cs 复制代码
using System;

namespace Legalsoft.Truffer.Algorithm
{
    /// <summary>
    /// 广义斐波那契数
    /// Generalised Fibonacci Numbers
    /// </summary>
    public static partial class Number_Sequence
    {
        /// <summary>
        /// 广义斐波那契数的算法
        /// </summary>
        /// <param name="N"></param>
        /// <param name="a"></param>
        /// <param name="b"></param>
        /// <param name="m"></param>
        /// <param name="n"></param>
        /// <returns></returns>
        public static int Generalized_Fibonacci_Number(int N, int a, int b, int m, int n)
        {
            int[,] F = { { m, 1 }, { n, 0 } };
            if (N == 0)
            {
                return a;
            }
            if (N == 1)
            {
                return b;
            }
            if (N == 2)
            {
                return m * b + n * a;
            }
            int[,] initial = { { m * b + n * a, b }, { b, a } };
            GFN_Power(ref F, N - 2, m, n);
            Fib_Multiply(ref initial, F);
            return F[0, 0];
        }

        /// <summary>
        /// 2x2矩阵乘法
        /// </summary>
        /// <param name="F"></param>
        /// <param name="M"></param>
        static void Fib_Multiply(ref int[,] F, int[,] M)
        {
            int x = F[0, 0] * M[0, 0] + F[0, 1] * M[1, 0];
            int y = F[0, 0] * M[0, 1] + F[0, 1] * M[1, 1];
            int z = F[1, 0] * M[0, 0] + F[1, 1] * M[1, 0];
            int w = F[1, 0] * M[0, 1] + F[1, 1] * M[1, 1];

            F[0, 0] = x;
            F[0, 1] = y;
            F[1, 0] = z;
            F[1, 1] = w;
        }

        private static void GFN_Power(ref int[,] F, int N, int m, int n)
        {
            int[,] M = { { m, 1 }, { n, 0 } };
            for (int i = 1; i <= N; i++)
            {
                Fib_Multiply(ref F, M);
            }
        }
    }
}
相关推荐
andy5520几秒前
.NET 使用 WMQ 连接Queue 发送 message 实例
xml·c#·wmq·c# 连接wmq·发送消息到wmq
破罐子不摔1 分钟前
【C#使用S7.NET库读取和写入西门子PLC变量】
java·c#·.net
刚入门的大一新生5 分钟前
归并排序延伸-非递归版本
算法·排序算法
独好紫罗兰9 分钟前
洛谷题单3-P1980 [NOIP 2013 普及组] 计数问题-python-流程图重构
开发语言·python·算法
独好紫罗兰14 分钟前
洛谷题单3-P1009 [NOIP 1998 普及组] 阶乘之和-python-流程图重构
开发语言·python·算法
杰尼杰尼丶19 分钟前
Winform MQTT客户端连接方式
c#·winform
曦月逸霜26 分钟前
蓝桥杯高频考点——高精度(含C++源码)
c++·算法·蓝桥杯
ゞ 正在缓冲99%…35 分钟前
leetcode152.乘积最大子数组
数据结构·算法·leetcode
闯闯爱编程1 小时前
数组与特殊压缩矩阵
数据结构·算法·矩阵
weixin_307779131 小时前
C#实现HiveQL建表语句中特殊数据类型的包裹
开发语言·数据仓库·hive·c#