机器学习_15_贝叶斯算法

文章目录

  • [1 贝叶斯定理相关公式](#1 贝叶斯定理相关公式)
  • [2 朴素贝叶斯算法](#2 朴素贝叶斯算法)
    • [2.1 朴素贝叶斯算法推导](#2.1 朴素贝叶斯算法推导)
    • [2.2 朴素贝叶斯算法流程](#2.2 朴素贝叶斯算法流程)
  • [3 高斯朴素贝叶斯](#3 高斯朴素贝叶斯)
  • [4 伯努利朴素贝叶斯](#4 伯努利朴素贝叶斯)
  • [5 多项式朴素贝叶斯](#5 多项式朴素贝叶斯)
  • [6 贝叶斯网络](#6 贝叶斯网络)
    • [6.1 最简单的一个贝叶斯网络](#6.1 最简单的一个贝叶斯网络)
    • [6.2 全连接贝叶斯网络](#6.2 全连接贝叶斯网络)
    • [6.3 "正常"贝叶斯网络](#6.3 “正常”贝叶斯网络)
    • [6.4 实际贝叶斯网络:判断是否下雨](#6.4 实际贝叶斯网络:判断是否下雨)
    • [6.5 贝叶斯网络判定条件独立-01](#6.5 贝叶斯网络判定条件独立-01)
    • [6.6 贝叶斯网络判定条件独立-02](#6.6 贝叶斯网络判定条件独立-02)
    • [6.7 贝叶斯网络判定条件独立-03](#6.7 贝叶斯网络判定条件独立-03)

1 贝叶斯定理相关公式

  • **先验概率P(A):**在不考虑任何情况下,A事件发生的概率。

  • **条件概率P(B|A):**A事件发生的情况下,B事件发生的概率。

  • **后验概率P(A|B):**在B事件发生之后,对A事件发生的概率的重新评估。

  • **全概率:**如果A和A'构成样本空间的一个划分,那么事件B的概率为:A和A'的概率分别乘以B对这两个事件的概率之和。

  • 基于条件概率的贝叶斯定律数学公式


2 朴素贝叶斯算法

  • 朴素贝叶斯(Naive Bayes, NB)是基于"特征之间是独立的"这一朴素假设,应用贝叶斯定理的监督学习算法
  • 对应给定的 样本X 的特征向量x1 ,x2 ,...,xm;该 样本X 的 类别y 的概率可以由贝叶斯公式得到:

2.1 朴素贝叶斯算法推导

2.2 朴素贝叶斯算法流程

朴素贝叶斯算法流程/定义如下:

  • 设x={x1 ,x2 ,...,xm}为待分类项,其中xi为x的一个特征属性。
  • 类别集合为C={y1 ,y2 ,...,yn }。
  • 分别计算P(y1 |x),P(y2 |x),...,P(yn |x)的值(贝叶斯公式)。
  • 如果P(yk |x)=max{P(y1 |x),P(y2 |x),...,P(yn |x)},那么认为x为yk类型。

3 高斯朴素贝叶斯

  • Gaussian Naive Bayes是指当特征属性为连续值时,而且分布服从高斯分布,那么在计算P(x|y)的时候可以直接使用高斯分布的概率公式:
  • 因此只需要计算出各个类别中此特征项划分的各个均值和标准差。

4 伯努利朴素贝叶斯

  • Bernoulli Naive Bayes是指当特征属性为连续值时,而且分布服从伯努利分布,那么在计算P(x|y)的时候可以直接使用伯努利分布的概率公式:

伯努利分布是一种离散分布,只有两种可能的结果。1表示成功,出现的概率为p; 0表示失败,出现的概率为q=1-p;其中均值为E(x)=p,方差为Var(X)=p(1-p)。

5 多项式朴素贝叶斯

  • Multinomial Naive Bayes是指当特征属性服从多项分布 (特征是离散的形式的时候),从而,对于每个类别y,参数为θy=(θy1y2,...,θyn),其中n为特征属性数目,那么P(xi|y)的概率为θyi

Ny是总样本个数,n是总的类别个数,Nyi是类别为θyi的样本个数,α为平滑值。

当α=1时,称为Laplace平滑,当0<α<1时,称为Lidstone平滑,α=0时不做平滑;平滑的主要作用是可以克服条件概率为0的问题。

6 贝叶斯网络

  • 把某个研究系统中涉及到的随机变量,根据是否条件独立绘制在一个有向图中,就形成了贝叶斯网络。
  • 贝叶斯网络(Bayesian Network),又称有向无环图模型(directed acyclic graphical model, DAG),是一种概率图模型 ,根据概率图的拓扑结构,考察一组随机变量{X1 ,X2 ,...,Xn}及其N组条件概率分布(Conditional Probabililty Distributions, CPD)的性质。
  • 当多个特征属性之间存在着某种相关关系的时候,使用朴素贝叶斯算法就没法解决这类问题,那么贝叶斯网络就是解决这类应用场景的一个非常好的算法。
  • 一般而言,贝叶斯网络的有向无环图中的节点表示随机变量,可以是可观察到的变量,或隐变量,未知参数等等。连接两个节点之间的箭头代表两个随机变量之间的因果关系(也就是这两个随机变量之间非条件独立),如果两个节点间以一个单箭头连接在一起,表示其中一个节点是"因" ,另外一个是"果" ,从而两节点之间就会产生一个条件概率值。
  • 注意:每个节点在给定其直接前驱的时候,条件独立于其后继。
  • 贝叶斯网络的关键方法是图模型,构建一个图模型我们需要把具有因果联系的各 个变量用箭头连在一起。贝叶斯网络的有向无环图中的节点表示随机变量。连接 两个节点的箭头代表此两个随机变量是具有因果关系的。
  • 贝叶斯网络是模拟人的认知思维推理模式的,用一组条件概率以及有向无环图对 不确定性因果推理关系建模。

6.1 最简单的一个贝叶斯网络

6.2 全连接贝叶斯网络

每一对节点之间都有边连接:

6.3 "正常"贝叶斯网络

6.4 实际贝叶斯网络:判断是否下雨

有一天早晨,Bruce离开他的房子的时候发现他家花园中的草地是湿的,有两种可能,第一:昨天晚上下雨了,第二:他昨天晚上忘记关掉花园中的喷水器,接下来,他观察他的邻居Joe,发现他家花园中的草地也是湿的,因此,他推断,他家的草地湿了是因为昨天晚上下雨的缘故。

6.5 贝叶斯网络判定条件独立-01

6.6 贝叶斯网络判定条件独立-02

6.7 贝叶斯网络判定条件独立-03

相关推荐
Hcoco_me2 小时前
大模型面试题17:PCA算法详解及入门实操
算法
跨境卫士苏苏3 小时前
亚马逊AI广告革命:告别“猜心”,迎接“共创”时代
大数据·人工智能·算法·亚马逊·防关联
云雾J视界3 小时前
当算法试图解决一切:技术解决方案主义的诱惑与陷阱
算法·google·bert·transformer·attention·算法治理
Xの哲學3 小时前
Linux Miscdevice深度剖析:从原理到实战的完整指南
linux·服务器·算法·架构·边缘计算
夏乌_Wx4 小时前
练题100天——DAY23:存在重复元素Ⅰ Ⅱ+两数之和
数据结构·算法·leetcode
立志成为大牛的小牛4 小时前
数据结构——五十六、排序的基本概念(王道408)
开发语言·数据结构·程序人生·算法
沿着路走到底5 小时前
将数组倒序,不能采用reverse,算法复杂度最低
算法
IDIOT___IDIOT5 小时前
KNN and K-means 监督与非监督学习
学习·算法·kmeans
Hcoco_me5 小时前
大模型面试题18:t-SNE算法详解及入门实操
算法