GEDepth:Ground Embedding for Monocular Depth Estimation

参考代码:gedepth

出发点与动机

相机的外参告诉了相机在世界坐标系下的位置信息,那么可以用这个外参构建一个地面基础深度作为先验 ,后续只需要在这个地面基础深度先验基础上添加offset就可以得到结果深度,这样可以极大简化深度估计网络学习的难度,自然深度估计的性能就上去了。先不说这个深度估计的实际效果如何,但是这个将复杂的问题简单化的思路是可以借鉴的。但是这个鲁棒性如何就需要打问号了,BEV感知中外参的变化带来的问题依然很头疼。

方法设计

文章的核心内容部分在左上部分,也就是如何去构建地面基础深度,文中给出了两种地面深度生成的方法:内外参映射、地面坡度加内外参,自然第二种的精度更高。这个基础深度再同你过一个学习到的加权参数 M a t t e n M_{atten} Matten去调和基础深度和网络本身预测的深度

单纯由内外参估计地面深度

这个借助内外参可以在平直路面实现基础地面深度估计,什么路面坡度、障碍物什么的都不考虑,单纯计算地面的深度。其计算出来的效果如下

借助地面坡度预测细化地面基础深度

单纯依靠内外参得到的地面基础深度是相当粗糙的,完全不能用,那么可以借用下图定义的路面坡度 α \alpha α来细化路面的实际情况,这个坡度的计算自然也需要预先通过真值计算得到,相当于是对真值在不同的维度做了监督

实验结果

KITTI上的性能比较:

DDAD数据集:

相关推荐
观无2 小时前
VisionPro 视觉检测工具基础知识点
人工智能·计算机视觉·视觉检测
童话名剑5 小时前
神经风格迁移(吴恩达深度学习笔记)
深度学习·机器学习·计算机视觉·特征检测·神经风格迁移
Chef_Chen5 小时前
数据科学每日总结--Day43--计算机视觉
人工智能·计算机视觉
北京地铁1号线6 小时前
人工智能岗位招聘专业笔试试卷及答案
人工智能·深度学习·计算机视觉·大语言模型
AI小怪兽7 小时前
YOLO26:面向实时目标检测的关键架构增强与性能基准测试
人工智能·yolo·目标检测·计算机视觉·目标跟踪·架构
岑梓铭7 小时前
YOLO深度学习(计算机视觉)—毕设笔记(yolo训练效率加快)
人工智能·笔记·深度学习·神经网络·yolo·计算机视觉
Ryan老房8 小时前
从LabelImg到TjMakeBot-标注工具的进化史
人工智能·yolo·目标检测·计算机视觉·ai
junziruruo8 小时前
损失函数(以FMTrack频率感知交互与多专家模型的损失为例)
图像处理·深度学习·学习·计算机视觉
li星野8 小时前
OpenCV4X学习-图像边缘检测、图像分割
深度学习·学习·计算机视觉
2501_941322038 小时前
【论文改进】柑桔目标检测:YOLO11-Seg与FocalModulation融合方案
人工智能·目标检测·计算机视觉