GEDepth:Ground Embedding for Monocular Depth Estimation

参考代码:gedepth

出发点与动机

相机的外参告诉了相机在世界坐标系下的位置信息,那么可以用这个外参构建一个地面基础深度作为先验 ,后续只需要在这个地面基础深度先验基础上添加offset就可以得到结果深度,这样可以极大简化深度估计网络学习的难度,自然深度估计的性能就上去了。先不说这个深度估计的实际效果如何,但是这个将复杂的问题简单化的思路是可以借鉴的。但是这个鲁棒性如何就需要打问号了,BEV感知中外参的变化带来的问题依然很头疼。

方法设计

文章的核心内容部分在左上部分,也就是如何去构建地面基础深度,文中给出了两种地面深度生成的方法:内外参映射、地面坡度加内外参,自然第二种的精度更高。这个基础深度再同你过一个学习到的加权参数 M a t t e n M_{atten} Matten去调和基础深度和网络本身预测的深度

单纯由内外参估计地面深度

这个借助内外参可以在平直路面实现基础地面深度估计,什么路面坡度、障碍物什么的都不考虑,单纯计算地面的深度。其计算出来的效果如下

借助地面坡度预测细化地面基础深度

单纯依靠内外参得到的地面基础深度是相当粗糙的,完全不能用,那么可以借用下图定义的路面坡度 α \alpha α来细化路面的实际情况,这个坡度的计算自然也需要预先通过真值计算得到,相当于是对真值在不同的维度做了监督

实验结果

KITTI上的性能比较:

DDAD数据集:

相关推荐
格林威9 小时前
常规线扫描镜头有哪些类型?能做什么?
人工智能·深度学习·数码相机·算法·计算机视觉·视觉检测·工业镜头
B站计算机毕业设计之家10 小时前
智慧交通项目:Python+YOLOv8 实时交通标志系统 深度学习实战(TT100K+PySide6 源码+文档)✅
人工智能·python·深度学习·yolo·计算机视觉·智慧交通·交通标志
txwtech10 小时前
第6篇 OpenCV RotatedRect如何判断矩形的角度
人工智能·opencv·计算机视觉
a1111111111ss13 小时前
添加最新的LSKNet遥感目标检测网络主干
人工智能·目标检测·计算机视觉
edward111018 小时前
[C++]探索现代C++中的移动语义与完美转发从底层原理到高级应用
计算机视觉
CoovallyAIHub1 天前
告别等待!十条高效PyTorch数据增强流水线,让你的GPU不再"饥饿"
深度学习·算法·计算机视觉
CoovallyAIHub1 天前
量子计算迎来诺奖时刻!谷歌赢麻了
深度学习·算法·计算机视觉
AI视觉网奇1 天前
开源3d数字人学习笔记2025
人工智能·计算机视觉
深瞳智检1 天前
YOLO算法原理详解系列 第002期-YOLOv2 算法原理详解
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪