【图论】网络流

网络流目前只整理模板,学习的话这篇博客可能不太适合

代码参考下方博客,加了一些自己的注释

FF 和 EK 仅用作理解代码,赛时请使用 Dinic 或 ISAP

下文建图方式都基于链式前向星,请注意,cnt 必须从 1 开始!!!!

cpp 复制代码
void add(int u, int v, int val)
{
    cnt ++ ;
	node[cnt].to = v;
	node[cnt].w = val;
	node[cnt].next = head[u];
	head[u] = cnt;
}

文章目录

Ford-Fulkerson (FF算法)

基于dfs的最大流算法

时间复杂度 O ( e f ) O(ef) O(ef),e是边数,f是最大流

cpp 复制代码
int n, m, start, end; // start是源点,end是汇点
bool st[MAXN]; // 标记某个点有没有被访问过

struct edges
{
	int to, w, next;
};

int dfs(int u, int flow) // u表示当前结点 flow表示目前流量
{
	if (p == t) return flow; // 到达终点,返回这条增广路的流量
	st[p] = true; // 标记已经访问过该点
	for (int eg = head[p]; eg != -1; eg = edges[eg].next) // 遍历所有邻接点
	{
		int to = edges[eg].to, w = edges[eg].w, c;
		if (w <= 0) continue; // 这条边不能再流过流量
		if (st[to]) continue; // 已经经过该点
		c = dfs(to, min(w, flow)); // 递归判断接下来能否到达终点 传递下去的流量是边的容量w与当前流量flow中的较小值
		if (c != -1) // 可以到达终点
		{
			edges[eg].w -= c; // 正向边容量w减去流量c
			edges[eg ^ 1].w += c; // 反向边容量w加上流量c
			// 建图时要把cnt置为1,且要保证反向边紧接着正向边建立
			return c; // 返回值是流量
		}
	}
	return -1; // 无法到达终点
}

int FF()
{
	int ans = 0, c; // ans代表总流量
	while ((c = dfs(start, INF)) != -1) // 只要还可以到达终点就一直dfs下去
	{
		memset(st, 0, sizeof(st)); // 初始化每个点的访问状态
		ans += c; // 加上本次dfs的流量
	}
	return ans;
}

Edmond-Karp (EK算法)

基于bfs的最大流算法

时间复杂度 O ( v e 2 ) O(ve^2) O(ve2),v是点数,e是边数

cpp 复制代码
// last表示该条增广路中通向该点的边的编号 flow表示每个点可以流过的最大流量(也就是从上一个点传过来的流量)
int n, m, start, end, last[MAXN], flow[MAXN]; 

struct edges
{
	int to, w, next;
};

int bfs()
{
	memset(last, -1, sizeof(last)); // 初始化每个点的增广路径
	queue<int> q;
	q.push(start);
	flow[start] = INF; // 源点可以流过的流量初始化为无穷大
	while (!q.empty())
	{
		int u = q.front();
		q.pop();
		if (u == t) break; // 到达汇点,结束搜索
		for (int eg = head[u]; eg != -1; eg = edges[eg].next) // 遍历所有邻接点
		{
			int to = edges[eg].to, w = edges[eg].w;
			if (w > 0 && last[to] == -1) // 如果残余容量大于0且未访问过(所以last保持在-1)
			{
				last[to] = eg; // 记录点to在本条增广路的上一条边的编号是eg
				flow[to] = min(flow[p], w); // 取边的容量和上一个点可以流过的流量的最小值
				q.push(to); // 新点入队
			}
		}
	}
	return last[end] != -1; // 如果汇点没有访问到,说明没有可以通向汇点的路了
}

int EK()
{
	int maxflow = 0; // maxflow代表总流量
	while (bfs()) // 只要还可以到达终点就一直bfs下去
	{
		maxflow += flow[end]; // 更新总流量 也就是加上能流到汇点的流量
		for (int i = end; i != start; i = edges[last[i] ^ 1].to) // 从汇点原路返回更新残余容量
		{
			edges[last[i]].w -= flow[end]; // 正向边容量w减去该条增广路流量flow[end]
			edges[last[i] ^ 1].w += flow[end]; // 反向边容量w加上该条增广路流量flow[end]
		}
	}
	return maxflow;
}

Dinic算法

基于FF和EK的最大流算法

时间复杂度 O ( n 2 e ) O(n^2e) O(n2e),n是点数,e是边数

先使用bfs分层,再使用dfs搜索,每次只往层数高的地方走,可以避免走重复的路径

优化:

  • 多路增广:在某点找到一条增广路,如果流量没用完,就接着往下bfs
  • 当前弧优化:在Dinic中每条边只会增广一次,所以下次增广就不需要考虑已经增广过的边,通过修改起始结点可以实现这个优化

注意:Dinic用在二分图中复杂度是 O ( v e ) O(v\sqrt{e}) O(ve ),v是点数,e是边数 ,优于匈牙利算法。

cpp 复制代码
int n, m, start, end, dep[MAXN], cur[MAXN]; // dep是每个点的层数 cur用于当前弧优化标记增广起点

struct edges
{
	int to, w, next;
};

bool bfs() // BFS分层
{
	memset(dep, -1, sizeof(dep)); // 初始化点的层数
	dep[start] = 0; // 初始化源点的层数为0
	memcpy(cur, head, sizeof(head)); // 当前弧优化初始化
	queue<int> q;
	q.push(start); // 源点入队
	while (!q.empty())
	{
		int u = q.front();
		q.pop();
		for (int eg = head[u]; eg; eg = edges[eg].next) // 遍历所有邻接点
		{
			int to = edges[eg].to, w = edges[eg].w;
			if (w > 0 && dep[to] == -1) // dep为-1说明没访问过
			{
				dep[to] = dep[u] + 1; // 更新to点层数
				q.push(to);
			}
		}
	}
	return dep[end] != -1; // 如果汇点未访问过说明已经无法达到汇点,此时返回false
}

int dfs(int u, int flow) // u表示当前结点 flow表示目前流量
{
	if (u == end) return flow; // 找到汇点 返回目前的流量
	int rmn = flow; // rmn表示剩余的流量
	for (int eg = cur[u]; eg != -1; eg = edges[eg].next) // 遍历所有邻接点
	{
		if (rmm == 0) break; // 无余量直接退出
		cur[u] = eg; // 当前弧优化 更新当下次访问该点时从哪条边开始遍历
		int to = edges[eg].to, w = edges[eg].w;
		if (w > 0 && dep[to] == dep[u] + 1) // 往层数高的方向增广
		{
			int c = dfs(to, min(w, rmn)); // 递归得到该点流量 传递下去的流量是边的容量w与当前流量flow中的较小值
			rmn -= c; // 剩余流量减少
			edges[eg].w -= c; // 正向边容量w减去流量c
			edges[eg ^ 1].w += c; // 反向边容量w加上流量c
		}
	}
	return flow - rmn; // 返回传递的流量的大小
}

int dinic()
{
	int ans = 0; // ans代表总流量
	while (bfs()) // 只要还可以到达终点就一直bfs下去
		ans += dfs(start, INF);
	return ans;
}

Improved Shortest Augumenting Path (ISAP算法)

考虑到Dinic中可能需要bfs多次,ISAP对此做出改进,只需要进行一次bfs即可

首先跑一遍bfs,从汇点到源点处理每个结点的深度

再从源点到汇点跑dfs,和Dinic类似,只是当一个点跑完后,如果从上一个点传过来的流量 flow 比该点的流过的流量 used 大,说明这个点的使用价值已经榨干了,但是还有剩余的流量,则把它的深度加1,如果出现断层(某个深度没有点),结束算法,没出现就一直跑下去

下方代码已加入当前弧优化

cpp 复制代码
struct Edge
{
	int to, next, w;
};

int dep[maxn], gap[maxn]; // dep[i]表示结点i在第几层 gap[i]表示第i层有多少结点
void bfs()
{
	memset(dep, -1, sizeof(dep));
	memset(gap, 0, sizeof(gap));
	dep[end] = 0; // 汇点层数初始化为0
	gap[0] = 1; // 层数为0的点个数初始化为1

	queue<int> q;
	q.push(end); // 汇点入队
	while (!q.empty())
	{
		int u = q.front();
		q.pop();
		for (int i = head[u]; i != -1; i = edge[i].next)
		{
			int to = edge[i].to;
			if (dep[to] != -1) continue; // 层数不为-1说明已经访问过这个点了
			dep[to] = dep[u] + 1; // 更新to点层数
			gap[dep[to]] ++ ; // 更新该层数点的数量 
			q.push(to); // to点入队
		}
	}
	return;
}

int maxflow;
int dfs(int u, int flow) // u表示当前结点 flow表示目前流量
{
	if (u == end) // 找到汇点
	{
		maxflow += flow; // 更新最大流量
		return flow; // 返回目前的流量
	}
	int used = 0; // 从u开始使用的流量
	for (int i = cur[u]; i != -1; i = edge[i].next)
	{
		cur[u] = i; // 当前弧优化 更新当下次访问该点时从哪条边开始遍历
		int to = edge[i].to, w = edge[i].w;
		if (w > 0 && dep[to] + 1 == dep[u]) // 边还有余量and层数符合要求(注意计算层数的时候是从汇点到源点的)
		{
			int c = dfs(to, min(w, flow - used)); // 递归得到该点流量 传递下去的流量是边的容量w与当前流量flow-used中的较小值
			if (c > 0)
			{
				edge[i].w -= c; // 正向边容量w减去流量c
				edge[i ^ 1].w += c; // 反向边容量w加上流量c
				used += c; // 更新已经用过的流量
			}
			if (used == flow) return used; // used和flow相等说明已经没有剩余流量分给其他的边了 所以直接返回
		}
	}
	// 如果能到这一步 说明u的所有邻接点都已经遍历过了 且还有剩余流量
	// 此时我们需要修改u点的层数
	gap[dep[u]] -- ; // 修改原本层数的结点数
	if (gap[dep[u]] == 0) dep[start] = n + 1; // 说明没有层数为dep[u]的结点了 断层 不可能再到达汇点了
	dep[u] ++ ; // 更新u的层数
	gap[dep[u]] ++ ; // 更新新层数的结点数
	return used; // 返回流过的流量
}

int ISAP()
{
	maxflow = 0; // maxflow是最大流量
	bfs();
	while (dep[start] < n)
	{
		memcpy(cur, head, sizeof(head));
		dfs(s, INF);
	}
	return maxflow;
}
相关推荐
神探阿航4 分钟前
第十五届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组
java·算法·蓝桥杯
皮肤科大白22 分钟前
如何在data.table中处理缺失值
学习·算法·机器学习
啥也学不会a37 分钟前
PLC通信
开发语言·网络·网络协议·c#
不能只会打代码2 小时前
蓝桥杯例题一
算法·蓝桥杯
OKkankan2 小时前
实现二叉树_堆
c语言·数据结构·c++·算法
hunter2062062 小时前
ubuntu调用图形化网络测试工具
网络·测试工具·ubuntu
SmartBrain2 小时前
华为发展历程:战略转型与分析
网络
ExRoc4 小时前
蓝桥杯真题 - 填充 - 题解
c++·算法·蓝桥杯
利刃大大4 小时前
【二叉树的深搜】二叉树剪枝
c++·算法·dfs·剪枝
元气满满的热码式4 小时前
K8S中Service详解(二)
linux·网络·kubernetes