【pytorch常用方法汇总】张量的转换、生成篇

目录

将列表转换为张量

  1. Python的列表或序列可以通过torch.tensor()函数构造张量。

  2. 查看维度和元素数量:

    x = torch.tensor([[1, 2, 3], [4, 5, 6]])

    • 查看维度:x.shapex.size(),返回torch.Size类型对象,可以直接解包
    • 查看元素数量:x.numel()
  3. 指定元素类型、分配的位置以及是否计算梯度:

    x = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=torch.float, device="cuda:0", requires_grad=True)

张量和Numpy数组的相互转化

  1. 利用NumPy数组生成tensor

    torch.from_numpy(ndarray) → Tensor

    将 numpy.ndarray 转换为 pytorch 的 Tensor。返回的张量 tensor 和 numpy的 ndarray 共享同一内存空间。修改一个会导致另外一个也被修改。返回的张量不能改变大小。

  2. tensor转化为numpy数组

    x.numpy() → ndarray

    将该 tensor 以 NumPy 的形式返回 ndarray,两者共享相同的底层内存。

随机数生成张量

  1. 生成随机数前,可以使用torch.manual_seed()函数,指定随机数种子,保证生成的随机数可以重复出现。在每次重新运行程序时,同样的随机数生成代码得到的是同样的结果。

  2. torch.rand(*sizes, out=None) → Tensor

    返回一个张量,包含了从区间[0,1)的均匀分布中抽取的一组随机数,形状由可变参数sizes 定义。

  3. torch.randn(*sizes, out=None) → Tensor

    返回一个张量,包含了从标准正态分布(均值为 0,方差为 1)中抽取一组随机数,形状由可变参数 sizes 定义。

  4. torch.normal(means, std, out=None) → Tensor

    返回一个张量,包含从给定参数 means,std 的离散正态分布中抽取随机数。

    均值 means 是一个张量,包含每个输出元素相关的正态分布的均值。

    std 是一个张量,包含每个输出元素相关的正态分布的标准差。 均值和标准差的形状不须匹配,但每个张量的元素个数须相同。

生成特定的张量

  1. torch.arange(start, end, step=1, out=None) → Tensor

    返回一个 1 维张量,长度为 floor((end−start)/step)。包含在半开区间 [start, end),以 step 为步长的一组序列值(默认步长为 1)。

  2. torch.linspace(start, end, steps=100, out=None) → Tensor

    返回一个 1 维张量,包含在区间 start 和 end 上均匀间隔的 step 个点,默认左右均为闭区间, 输出 1 维张量的长度为steps。

  3. torch.zeros(*sizes, out=None) → Tensor

    返回一个全为标量 0 的张量,形状由可变参数 sizes 定义。

    sizes (int...) -- 整数序列,定义了输出形状

    out (Tensor, optional) -- 结果张量

  4. torch.ones(*sizes, out=None) → Tensor

    返回一个全为 1 的张量,形状由可变参数 sizes 定义。

    参数同上

  5. torch.eye(n, m=None, out=None)→ Tensor

    返回一个 2 维张量,对角线位置全 1,其它位置全 0

    n (int) -- 行数

    m (int, optional) -- 列数:如果为 None,则默认为 n

    out (Tensor, optinal) - Output tensor

相关推荐
雨大王5121 分钟前
工业互联网平台在汽车制造业能耗异常诊断中的应用
人工智能
Hali_Botebie3 分钟前
【CVPR】Enhancing 3D Object Detection with 2D Detection-Guided Query Anchors
人工智能·目标检测·3d
AI云原生4 分钟前
如何解决 pip install 代理报错 SOCKS5 握手失败 ReadTimeoutError 问题
网络·爬虫·python·网络协议·tcp/ip·scikit-learn·pip
fie88895 分钟前
在图像增强的领域中,使用梯度、对比度、信息熵、亮度进行图像质量评价
图像处理·人工智能·计算机视觉
Easonmax5 分钟前
从0到1:Qwen-1.8B-Chat 在昇腾Atlas 800T A2上的部署与实战指南前言
人工智能·pytorch·深度学习
小小工匠6 分钟前
LLM - 生产级 AI Agent 设计手册:从感知、记忆到决策执行的全链路架构解析
人工智能·架构
Baihai_IDP9 分钟前
大家都可以调用LLM API,AI套壳产品的护城河在哪里?
人工智能·llm·ai编程
北京耐用通信1 小时前
耐达讯自动化PROFIBUS三路中继器:突破工业通信距离与干扰限制的利器
人工智能·物联网·自动化·信息与通信
德迅云安全—珍珍7 小时前
2026 年网络安全预测:AI 全面融入实战的 100+行业洞察
人工智能·安全·web安全
cnxy1888 小时前
围棋对弈Python程序开发完整指南:步骤4 - 提子逻辑和劫争规则实现
开发语言·python·机器学习