【pytorch常用方法汇总】张量的转换、生成篇

目录

将列表转换为张量

  1. Python的列表或序列可以通过torch.tensor()函数构造张量。

  2. 查看维度和元素数量:

    x = torch.tensor([[1, 2, 3], [4, 5, 6]])

    • 查看维度:x.shapex.size(),返回torch.Size类型对象,可以直接解包
    • 查看元素数量:x.numel()
  3. 指定元素类型、分配的位置以及是否计算梯度:

    x = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=torch.float, device="cuda:0", requires_grad=True)

张量和Numpy数组的相互转化

  1. 利用NumPy数组生成tensor

    torch.from_numpy(ndarray) → Tensor

    将 numpy.ndarray 转换为 pytorch 的 Tensor。返回的张量 tensor 和 numpy的 ndarray 共享同一内存空间。修改一个会导致另外一个也被修改。返回的张量不能改变大小。

  2. tensor转化为numpy数组

    x.numpy() → ndarray

    将该 tensor 以 NumPy 的形式返回 ndarray,两者共享相同的底层内存。

随机数生成张量

  1. 生成随机数前,可以使用torch.manual_seed()函数,指定随机数种子,保证生成的随机数可以重复出现。在每次重新运行程序时,同样的随机数生成代码得到的是同样的结果。

  2. torch.rand(*sizes, out=None) → Tensor

    返回一个张量,包含了从区间[0,1)的均匀分布中抽取的一组随机数,形状由可变参数sizes 定义。

  3. torch.randn(*sizes, out=None) → Tensor

    返回一个张量,包含了从标准正态分布(均值为 0,方差为 1)中抽取一组随机数,形状由可变参数 sizes 定义。

  4. torch.normal(means, std, out=None) → Tensor

    返回一个张量,包含从给定参数 means,std 的离散正态分布中抽取随机数。

    均值 means 是一个张量,包含每个输出元素相关的正态分布的均值。

    std 是一个张量,包含每个输出元素相关的正态分布的标准差。 均值和标准差的形状不须匹配,但每个张量的元素个数须相同。

生成特定的张量

  1. torch.arange(start, end, step=1, out=None) → Tensor

    返回一个 1 维张量,长度为 floor((end−start)/step)。包含在半开区间 [start, end),以 step 为步长的一组序列值(默认步长为 1)。

  2. torch.linspace(start, end, steps=100, out=None) → Tensor

    返回一个 1 维张量,包含在区间 start 和 end 上均匀间隔的 step 个点,默认左右均为闭区间, 输出 1 维张量的长度为steps。

  3. torch.zeros(*sizes, out=None) → Tensor

    返回一个全为标量 0 的张量,形状由可变参数 sizes 定义。

    sizes (int...) -- 整数序列,定义了输出形状

    out (Tensor, optional) -- 结果张量

  4. torch.ones(*sizes, out=None) → Tensor

    返回一个全为 1 的张量,形状由可变参数 sizes 定义。

    参数同上

  5. torch.eye(n, m=None, out=None)→ Tensor

    返回一个 2 维张量,对角线位置全 1,其它位置全 0

    n (int) -- 行数

    m (int, optional) -- 列数:如果为 None,则默认为 n

    out (Tensor, optinal) - Output tensor

相关推荐
shangjian0072 小时前
AI-大语言模型LLM-Transformer架构4-多头注意力、掩码注意力、交叉注意力
人工智能·语言模型·transformer
努力犯错2 小时前
如何使用AI图片扩展器扩展图片边界:2026年完整指南
人工智能
晨非辰2 小时前
Linux权限管理速成:umask掩码/file透视/粘滞位防护15分钟精通,掌握权限减法与安全协作模型
linux·运维·服务器·c++·人工智能·后端
2501_941507943 小时前
【YOLOv26】教育环境中危险物品实时检测系统_基于深度学习的校园安全解决方案
深度学习·安全·yolo
丝斯20113 小时前
AI学习笔记整理(63)——大模型对齐与强化学习
人工智能·笔记·学习
延凡科技6 小时前
无人机低空智能巡飞巡检平台:全域感知与智能决策的低空作业中枢
大数据·人工智能·科技·安全·无人机·能源
2501_941329726 小时前
YOLOv8-SEAMHead改进实战:书籍检测与识别系统优化方案
人工智能·yolo·目标跟踪
晓翔仔8 小时前
【深度实战】Agentic AI 安全攻防指南:基于 CSA 红队测试手册的 12 类风险完整解析
人工智能·安全·ai·ai安全
百家方案8 小时前
2026年数据治理整体解决方案 - 全1066页下载
大数据·人工智能·数据治理
北京耐用通信8 小时前
工业自动化中耐达讯自动化Profibus光纤链路模块连接RFID读写器的应用
人工智能·科技·物联网·自动化·信息与通信