[论文精读]Community-Aware Transformer for Autism Prediction in fMRI Connectome

论文网址:[2307.10181] Community-Aware Transformer for Autism Prediction in fMRI Connectome (arxiv.org)

论文代码:GitHub - ubc-tea/Com-BrainTF: The official Pytorch implementation of paper "Community-Aware Transformer for Autism Prediction in fMRI Connectome" accepted by MICCAI 2023

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用!

1. 省流版

1.1. 心得

(1)我超,开篇自闭症是lifelong疾病。搜了搜是真的啊,玉玉可以治愈但是自闭症不太行,为啥,太神奇了。我还没有见过自闭症的

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

①Treating each ROI equally will overlook the social relationships between them. Thus, the authors put forward Com-BrainTF model to learn local and global presentations

②They share the parameters between different communities but provide specific token for each community

2.2. Introduction

①ASD patients perform abnormal in default mode network (DMN) and are influenced by the significant change of dorsal attention network (DAN) and DMN

②Com-BrainTF contains a hierarchical transformer to learn community embedding and a local transformer to aggregate the whole information of brain

③Sharing the local transformer parameters can avoid over-parameterization

2.3. Method

2.3.1. Overview

(1)Problem Definition

①They adopt Pearson correlation coefficients methods to obrain functional connectivity matrices

②Then divide ROIs to communities

③The learned embedding

④Next, the following pooling layer and MPLs predict the labels

(2)Overview of our Pipeline

①They provide a local transformer, a global transformer and a pooling layer in their local-global transformer architecture

②The overall framework

2.3.2. Local-global transformer encoder

①With the input FC, the learned node feature matrix can be calculated by

②In transformer encoder module,

where ,

is the number of heads

(1)Local Transformer

①They apply same local transformer for all the input, but use unique learnable tokens :

(2)Global Transformer

①The global operation is:

2.3.3. Graph Readout Layer

①They aggregate node embedding by OCRead.

②The graph level embedding is calculated by , where is a learnable assignment matrix computed by OCRead layer

③Afterwards, flattening and put it in MLP for final prediction

④Loss: CrossEntropy (CE) loss

2.4. Experiments

2.4.1. Datasets and Experimental Settings

(1)ABIDE

(2)Experimental Settings

2.4.2. Quantitative and Qualitative Results

2.4.3. Ablation studies

(1)Input: node features vs. class tokens of local transformers

(2)Output: Cross Entropy loss on the learned node features vs. prompt token

2.5. Conclusion

2.6. Supplementary Materials

2.6.1. Variations on the Number of Prompts

2.6.2. Attention Scores of ASD vs. HC in Comparison between Com-BrainTF (ours) and BNT (baseline)

2.6.3. Decoded Functional Group Differences of ASD vs. HC

  1. 知识补充

4. Reference List

Bannadabhavi A. et al. (2023) 'Community-Aware Transformer for Autism Prediction in fMRI Connectome', 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023) , doi: https://doi.org/10.48550/arXiv.2307.10181

相关推荐
jinxinyuuuus4 小时前
Info Flow:分布式信息采集、数据去重与内容分级的工程实现
人工智能·分布式·程序人生·生活
IT_陈寒4 小时前
Spring Boot 3.2 性能翻倍秘诀:这5个配置优化让你的应用起飞🚀
前端·人工智能·后端
5***79004 小时前
MCP在边缘计算中的应用场景
人工智能·边缘计算
Tezign_space4 小时前
技术破局:人机协作如何重构内容生产流水线,实现成本与效能的范式转移
人工智能·重构·降本增效·人机协作·内容数字化·内容科技·内容+人工智能
小毅&Nora4 小时前
【人工智能】人工智能发展历程全景解析:从图灵测试到大模型时代(含CNN、Q-Learning深度实践)
人工智能·cnn·q-learning
智者知已应修善业4 小时前
【51单片机LED贪吃蛇】2023-3-27
c语言·c++·经验分享·笔记·嵌入式硬件·51单片机
人工智能技术咨询.4 小时前
具身智能-普通LLM智能体与具身智能:从语言理解到自主行动
人工智能·transformer
Mintopia4 小时前
🧭 Claude Code 用户工作区最佳实践指南
前端·人工智能·claude
zhanglei5000384 小时前
一、机器学习概述
机器学习
Caven774 小时前
【2025版李宏毅机器学习系列课程】CH2 机器学习 Training Guide
人工智能·机器学习