[论文精读]Community-Aware Transformer for Autism Prediction in fMRI Connectome

论文网址:[2307.10181] Community-Aware Transformer for Autism Prediction in fMRI Connectome (arxiv.org)

论文代码:GitHub - ubc-tea/Com-BrainTF: The official Pytorch implementation of paper "Community-Aware Transformer for Autism Prediction in fMRI Connectome" accepted by MICCAI 2023

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用!

1. 省流版

1.1. 心得

(1)我超,开篇自闭症是lifelong疾病。搜了搜是真的啊,玉玉可以治愈但是自闭症不太行,为啥,太神奇了。我还没有见过自闭症的

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

①Treating each ROI equally will overlook the social relationships between them. Thus, the authors put forward Com-BrainTF model to learn local and global presentations

②They share the parameters between different communities but provide specific token for each community

2.2. Introduction

①ASD patients perform abnormal in default mode network (DMN) and are influenced by the significant change of dorsal attention network (DAN) and DMN

②Com-BrainTF contains a hierarchical transformer to learn community embedding and a local transformer to aggregate the whole information of brain

③Sharing the local transformer parameters can avoid over-parameterization

2.3. Method

2.3.1. Overview

(1)Problem Definition

①They adopt Pearson correlation coefficients methods to obrain functional connectivity matrices

②Then divide ROIs to communities

③The learned embedding

④Next, the following pooling layer and MPLs predict the labels

(2)Overview of our Pipeline

①They provide a local transformer, a global transformer and a pooling layer in their local-global transformer architecture

②The overall framework

2.3.2. Local-global transformer encoder

①With the input FC, the learned node feature matrix can be calculated by

②In transformer encoder module,

where ,

is the number of heads

(1)Local Transformer

①They apply same local transformer for all the input, but use unique learnable tokens :

(2)Global Transformer

①The global operation is:

2.3.3. Graph Readout Layer

①They aggregate node embedding by OCRead.

②The graph level embedding is calculated by , where is a learnable assignment matrix computed by OCRead layer

③Afterwards, flattening and put it in MLP for final prediction

④Loss: CrossEntropy (CE) loss

2.4. Experiments

2.4.1. Datasets and Experimental Settings

(1)ABIDE

(2)Experimental Settings

2.4.2. Quantitative and Qualitative Results

2.4.3. Ablation studies

(1)Input: node features vs. class tokens of local transformers

(2)Output: Cross Entropy loss on the learned node features vs. prompt token

2.5. Conclusion

2.6. Supplementary Materials

2.6.1. Variations on the Number of Prompts

2.6.2. Attention Scores of ASD vs. HC in Comparison between Com-BrainTF (ours) and BNT (baseline)

2.6.3. Decoded Functional Group Differences of ASD vs. HC

  1. 知识补充

4. Reference List

Bannadabhavi A. et al. (2023) 'Community-Aware Transformer for Autism Prediction in fMRI Connectome', 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023) , doi: https://doi.org/10.48550/arXiv.2307.10181

相关推荐
静心问道1 分钟前
FLAN-T5:规模化指令微调的语言模型
人工智能·语言模型·自然语言处理
李师兄说大模型1 分钟前
KDD 2025 | 地理定位中的群体智能:一个多智能体大型视觉语言模型协同框架
人工智能·深度学习·机器学习·语言模型·自然语言处理·大模型·deepseek
静心问道2 分钟前
SqueezeBERT:计算机视觉能为自然语言处理在高效神经网络方面带来哪些启示?
人工智能·计算机视觉·自然语言处理
Sherlock Ma3 分钟前
百度开源文心一言4.5:论文解读和使用入门
人工智能·百度·自然语言处理·开源·大模型·文心一言·多模态
weisian1517 分钟前
人工智能-基础篇-18-什么是RAG(检索增强生成:知识库+向量化技术+大语言模型LLM整合的技术框架)
人工智能·语言模型·自然语言处理
THMOM919 分钟前
TinyWebserver学习(9)-HTTP
网络协议·学习·http
DataCastle13 分钟前
第三届Bio-OS AI开源大赛启动会隆重举行
人工智能
后端小肥肠21 分钟前
躺赚必备!RPA+Coze+豆包:公众号自动发文,AI率0%亲测有效(附AI率0%提示词)
人工智能·aigc·coze
摘星编程33 分钟前
CloudBase AI ToolKit实战:从0到1开发一个智能医疗网站
人工智能·腾讯云·ai代码远征季#h5应用·ai医疗应用·cloudbase开发
锅挤38 分钟前
深度学习5(深层神经网络 + 参数和超参数)
人工智能·深度学习·神经网络