[论文精读]Community-Aware Transformer for Autism Prediction in fMRI Connectome

论文网址:[2307.10181] Community-Aware Transformer for Autism Prediction in fMRI Connectome (arxiv.org)

论文代码:GitHub - ubc-tea/Com-BrainTF: The official Pytorch implementation of paper "Community-Aware Transformer for Autism Prediction in fMRI Connectome" accepted by MICCAI 2023

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用!

1. 省流版

1.1. 心得

(1)我超,开篇自闭症是lifelong疾病。搜了搜是真的啊,玉玉可以治愈但是自闭症不太行,为啥,太神奇了。我还没有见过自闭症的

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

①Treating each ROI equally will overlook the social relationships between them. Thus, the authors put forward Com-BrainTF model to learn local and global presentations

②They share the parameters between different communities but provide specific token for each community

2.2. Introduction

①ASD patients perform abnormal in default mode network (DMN) and are influenced by the significant change of dorsal attention network (DAN) and DMN

②Com-BrainTF contains a hierarchical transformer to learn community embedding and a local transformer to aggregate the whole information of brain

③Sharing the local transformer parameters can avoid over-parameterization

2.3. Method

2.3.1. Overview

(1)Problem Definition

①They adopt Pearson correlation coefficients methods to obrain functional connectivity matrices

②Then divide ROIs to communities

③The learned embedding

④Next, the following pooling layer and MPLs predict the labels

(2)Overview of our Pipeline

①They provide a local transformer, a global transformer and a pooling layer in their local-global transformer architecture

②The overall framework

2.3.2. Local-global transformer encoder

①With the input FC, the learned node feature matrix can be calculated by

②In transformer encoder module,

where ,

is the number of heads

(1)Local Transformer

①They apply same local transformer for all the input, but use unique learnable tokens :

(2)Global Transformer

①The global operation is:

2.3.3. Graph Readout Layer

①They aggregate node embedding by OCRead.

②The graph level embedding is calculated by , where is a learnable assignment matrix computed by OCRead layer

③Afterwards, flattening and put it in MLP for final prediction

④Loss: CrossEntropy (CE) loss

2.4. Experiments

2.4.1. Datasets and Experimental Settings

(1)ABIDE

(2)Experimental Settings

2.4.2. Quantitative and Qualitative Results

2.4.3. Ablation studies

(1)Input: node features vs. class tokens of local transformers

(2)Output: Cross Entropy loss on the learned node features vs. prompt token

2.5. Conclusion

2.6. Supplementary Materials

2.6.1. Variations on the Number of Prompts

2.6.2. Attention Scores of ASD vs. HC in Comparison between Com-BrainTF (ours) and BNT (baseline)

2.6.3. Decoded Functional Group Differences of ASD vs. HC

  1. 知识补充

4. Reference List

Bannadabhavi A. et al. (2023) 'Community-Aware Transformer for Autism Prediction in fMRI Connectome', 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023) , doi: https://doi.org/10.48550/arXiv.2307.10181

相关推荐
risc12345620 分钟前
思维脚手架
笔记
林开落L25 分钟前
从零开始学习Protobuf(C++实战版)
开发语言·c++·学习·protobuffer·结构化数据序列化机制
risc12345627 分钟前
只身走过多少的岁月,弹指一梦不过一瞬间
笔记
哎呦 你干嘛~28 分钟前
MODBUS协议学习
学习
明明如月学长34 分钟前
全网最火的 Agent Skills 都在这了!这 7 个宝藏市场建议收藏
人工智能
猫头虎36 分钟前
如何使用Docker部署OpenClaw汉化中文版?
运维·人工智能·docker·容器·langchain·开源·aigc
njsgcs37 分钟前
输入图片,点击按钮,返回下一个state的图片,llm给标签,循环,能训练出按钮对应的标签吗
人工智能
小陈phd37 分钟前
多模态大模型学习笔记(一)——机器学习入门:监督/无监督学习核心任务全解析
笔记·学习·机器学习
holeer39 分钟前
【V2.0】王万良《人工智能导论》笔记|《人工智能及其应用》课程教材笔记
神经网络·机器学习·ai·cnn·nlp·知识图谱·智能计算