[论文精读]Community-Aware Transformer for Autism Prediction in fMRI Connectome

论文网址:[2307.10181] Community-Aware Transformer for Autism Prediction in fMRI Connectome (arxiv.org)

论文代码:GitHub - ubc-tea/Com-BrainTF: The official Pytorch implementation of paper "Community-Aware Transformer for Autism Prediction in fMRI Connectome" accepted by MICCAI 2023

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用!

1. 省流版

1.1. 心得

(1)我超,开篇自闭症是lifelong疾病。搜了搜是真的啊,玉玉可以治愈但是自闭症不太行,为啥,太神奇了。我还没有见过自闭症的

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

①Treating each ROI equally will overlook the social relationships between them. Thus, the authors put forward Com-BrainTF model to learn local and global presentations

②They share the parameters between different communities but provide specific token for each community

2.2. Introduction

①ASD patients perform abnormal in default mode network (DMN) and are influenced by the significant change of dorsal attention network (DAN) and DMN

②Com-BrainTF contains a hierarchical transformer to learn community embedding and a local transformer to aggregate the whole information of brain

③Sharing the local transformer parameters can avoid over-parameterization

2.3. Method

2.3.1. Overview

(1)Problem Definition

①They adopt Pearson correlation coefficients methods to obrain functional connectivity matrices

②Then divide ROIs to communities

③The learned embedding

④Next, the following pooling layer and MPLs predict the labels

(2)Overview of our Pipeline

①They provide a local transformer, a global transformer and a pooling layer in their local-global transformer architecture

②The overall framework

2.3.2. Local-global transformer encoder

①With the input FC, the learned node feature matrix can be calculated by

②In transformer encoder module,

where ,

is the number of heads

(1)Local Transformer

①They apply same local transformer for all the input, but use unique learnable tokens :

(2)Global Transformer

①The global operation is:

2.3.3. Graph Readout Layer

①They aggregate node embedding by OCRead.

②The graph level embedding is calculated by , where is a learnable assignment matrix computed by OCRead layer

③Afterwards, flattening and put it in MLP for final prediction

④Loss: CrossEntropy (CE) loss

2.4. Experiments

2.4.1. Datasets and Experimental Settings

(1)ABIDE

(2)Experimental Settings

2.4.2. Quantitative and Qualitative Results

2.4.3. Ablation studies

(1)Input: node features vs. class tokens of local transformers

(2)Output: Cross Entropy loss on the learned node features vs. prompt token

2.5. Conclusion

2.6. Supplementary Materials

2.6.1. Variations on the Number of Prompts

2.6.2. Attention Scores of ASD vs. HC in Comparison between Com-BrainTF (ours) and BNT (baseline)

2.6.3. Decoded Functional Group Differences of ASD vs. HC

  1. 知识补充

4. Reference List

Bannadabhavi A. et al. (2023) 'Community-Aware Transformer for Autism Prediction in fMRI Connectome', 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023) , doi: https://doi.org/10.48550/arXiv.2307.10181

相关推荐
落羽凉笙2 小时前
Python学习笔记(3)|数据类型、变量与运算符:夯实基础,从入门到避坑(附图解+代码)
笔记·python·学习
Light602 小时前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升2 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
natide3 小时前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农3 小时前
码农的妇产科实习记录
android·java·人工智能
TechubNews3 小时前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
脑极体3 小时前
机器人的罪与罚
人工智能·机器人
三不原则3 小时前
故障案例:容器启动失败排查(AI运维场景)——从日志分析到根因定位
运维·人工智能·kubernetes
点云SLAM3 小时前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
会周易的程序员3 小时前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构