矩阵的正定(positive definite)性质的作用

1. 定义

注意,本文中正定和半正定矩阵不要求是对称或Hermite的。

2. 性质

3. 作用

(1)Ax=b直接法求解

|----------|--------------|
| cholesky | 实对称正定矩阵求解 |
| cholesky | 复共轭对称正定矩阵求解 |
| LDL | 实对称非正定矩阵求解 |
| LDL | 复共轭对称非正定矩阵求解 |
| LDL | 复对称矩阵求解 |
| LU | 实非对称矩阵求解 |
| LU | 复非对称矩阵求解 |

(2)特征值求解

在ARPACK(隐式重启Arnoldi算法)中,对K*x=lambda*M*x该广义特征值问题

M必须得是

|------------------|-------------------------------------------|----------------------|
| Mode | Operator | M |
| Shift | OP = inv[M]*K, and B = M. | 对称-正定 或Hemitian-正定 |
| Shift-and-invert | OP = (inv[K - sigma*M])*M, and B = M. | 对称-半正定 或Hemitian-半正定 |

注释:

  1. OP:operator,表示Arnoldi过程中与向量作用的算子,用户需要提供矩阵向量乘积w ← OPv
  2. M-inner product: <x ,y > =
  3. M-orthogonal: x, y称为M-orthogonal若<x ,y> = 0
  4. B: 用来定义M-inner product中的矩阵,用户需要提供矩阵向量乘积w ← Mv

Slepc有提及,若M不是正定也不是半正定的话,可以用EPS_GHIEP求解。

特征值中,正定或半正定性质对于 M 矩阵来说是一个优良属性,因为它确保了问题的物理可解性和数值计算的稳定性。例如,在结构动力学中,M 作为质量矩阵时,其正定性意味着系统的质量分布是非负的,这是物理上合理的。正定或半正定的 M 矩阵也有助于保证广义特征值问题解的良好性质,如确保所有特征值是实数且特征向量是良定义的。

然而,在某些情况下,M 矩阵可能不是正定或半正定的,这并不意味着广义特征值问题就无法求解。这些情况下,问题可能更加复杂,需要特别的数值方法来处理可能出现的数值不稳定性或解的不确定性。

相关推荐
张晓~183399481212 小时前
数字人分身+矩阵系统聚合+碰一碰发视频: 源码搭建-支持OEM
线性代数·矩阵·音视频
山登绝顶我为峰 3(^v^)34 小时前
如何录制带备注的演示文稿(LaTex Beamer + Pympress)
c++·线性代数·算法·计算机·密码学·音视频·latex
微小冷12 小时前
二关节机器人系统模型推导
线性代数·机器人·概率论·推导·拉格朗日函数·二关节机器人·机器人控制系统的设计
YuTaoShao1 天前
【LeetCode 热题 100】73. 矩阵置零——(解法二)空间复杂度 O(1)
java·算法·leetcode·矩阵
luofeiju1 天前
使用LU分解求解线性方程组
线性代数·算法
FF-Studio2 天前
【硬核数学 · LLM篇】3.1 Transformer之心:自注意力机制的线性代数解构《从零构建机器学习、深度学习到LLM的数学认知》
人工智能·pytorch·深度学习·线性代数·机器学习·数学建模·transformer
szekl2 天前
HDMI 2.0 4×2矩阵切换器412HN——多信号输入输出的高清解决方案
linux·矩阵·计算机外设·电脑·ekl
盛寒3 天前
矩阵的定义和运算 线性代数
线性代数
盛寒3 天前
初等变换 线性代数
线性代数
叶子爱分享3 天前
浅谈「线性代数的本质」 - 系列合集
线性代数