矩阵的正定(positive definite)性质的作用

1. 定义

注意,本文中正定和半正定矩阵不要求是对称或Hermite的。

2. 性质

3. 作用

(1)Ax=b直接法求解

|----------|--------------|
| cholesky | 实对称正定矩阵求解 |
| cholesky | 复共轭对称正定矩阵求解 |
| LDL | 实对称非正定矩阵求解 |
| LDL | 复共轭对称非正定矩阵求解 |
| LDL | 复对称矩阵求解 |
| LU | 实非对称矩阵求解 |
| LU | 复非对称矩阵求解 |

(2)特征值求解

在ARPACK(隐式重启Arnoldi算法)中,对K*x=lambda*M*x该广义特征值问题

M必须得是

|------------------|-------------------------------------------|----------------------|
| Mode | Operator | M |
| Shift | OP = inv[M]*K, and B = M. | 对称-正定 或Hemitian-正定 |
| Shift-and-invert | OP = (inv[K - sigma*M])*M, and B = M. | 对称-半正定 或Hemitian-半正定 |

注释:

  1. OP:operator,表示Arnoldi过程中与向量作用的算子,用户需要提供矩阵向量乘积w ← OPv
  2. M-inner product: <x ,y > =
  3. M-orthogonal: x, y称为M-orthogonal若<x ,y> = 0
  4. B: 用来定义M-inner product中的矩阵,用户需要提供矩阵向量乘积w ← Mv

Slepc有提及,若M不是正定也不是半正定的话,可以用EPS_GHIEP求解。

特征值中,正定或半正定性质对于 M 矩阵来说是一个优良属性,因为它确保了问题的物理可解性和数值计算的稳定性。例如,在结构动力学中,M 作为质量矩阵时,其正定性意味着系统的质量分布是非负的,这是物理上合理的。正定或半正定的 M 矩阵也有助于保证广义特征值问题解的良好性质,如确保所有特征值是实数且特征向量是良定义的。

然而,在某些情况下,M 矩阵可能不是正定或半正定的,这并不意味着广义特征值问题就无法求解。这些情况下,问题可能更加复杂,需要特别的数值方法来处理可能出现的数值不稳定性或解的不确定性。

相关推荐
数智工坊43 分钟前
【数据结构-特殊矩阵】3.5 特殊矩阵-压缩存储
数据结构·线性代数·矩阵
AI科技星44 分钟前
张祥前统一场论核心场方程的经典验证-基于电子与质子的求导溯源及力的精确计算
线性代数·算法·机器学习·矩阵·概率论
deep_drink3 小时前
【基础知识二】彻底读懂拉普拉斯矩阵 (Laplacian)
人工智能·深度学习·线性代数·矩阵
sonadorje3 小时前
标量投影和向量投影
线性代数
Amber勇闯数分6 小时前
【Hive】基于物品协同过滤 [ ItemCF ] 推荐课程-余弦相似度计算
大数据·数据仓库·hive·hadoop·矩阵
跨境卫士情报站1 天前
用“渠道矩阵+内容节奏”把流量做成可控资产
大数据·人工智能·矩阵·产品运营·跨境电商·亚马逊
别或许1 天前
01线性代数之行列式(知识总结)
线性代数
劈星斩月1 天前
线性代数-3Blue1Brown《线性代数的本质》基变换(11)
线性代数·基变换
张祥6422889041 天前
二次型:从线性代数到测量平差的桥梁
线性代数·算法·机器学习
sonadorje1 天前
欧氏内积(Euclidean Inner Product)
线性代数·矩阵