矩阵的正定(positive definite)性质的作用

1. 定义

注意,本文中正定和半正定矩阵不要求是对称或Hermite的。

2. 性质

3. 作用

(1)Ax=b直接法求解

|----------|--------------|
| cholesky | 实对称正定矩阵求解 |
| cholesky | 复共轭对称正定矩阵求解 |
| LDL | 实对称非正定矩阵求解 |
| LDL | 复共轭对称非正定矩阵求解 |
| LDL | 复对称矩阵求解 |
| LU | 实非对称矩阵求解 |
| LU | 复非对称矩阵求解 |

(2)特征值求解

在ARPACK(隐式重启Arnoldi算法)中,对K*x=lambda*M*x该广义特征值问题

M必须得是

|------------------|-------------------------------------------|----------------------|
| Mode | Operator | M |
| Shift | OP = inv[M]*K, and B = M. | 对称-正定 或Hemitian-正定 |
| Shift-and-invert | OP = (inv[K - sigma*M])*M, and B = M. | 对称-半正定 或Hemitian-半正定 |

注释:

  1. OP:operator,表示Arnoldi过程中与向量作用的算子,用户需要提供矩阵向量乘积w ← OPv
  2. M-inner product: <x ,y > =
  3. M-orthogonal: x, y称为M-orthogonal若<x ,y> = 0
  4. B: 用来定义M-inner product中的矩阵,用户需要提供矩阵向量乘积w ← Mv

Slepc有提及,若M不是正定也不是半正定的话,可以用EPS_GHIEP求解。

特征值中,正定或半正定性质对于 M 矩阵来说是一个优良属性,因为它确保了问题的物理可解性和数值计算的稳定性。例如,在结构动力学中,M 作为质量矩阵时,其正定性意味着系统的质量分布是非负的,这是物理上合理的。正定或半正定的 M 矩阵也有助于保证广义特征值问题解的良好性质,如确保所有特征值是实数且特征向量是良定义的。

然而,在某些情况下,M 矩阵可能不是正定或半正定的,这并不意味着广义特征值问题就无法求解。这些情况下,问题可能更加复杂,需要特别的数值方法来处理可能出现的数值不稳定性或解的不确定性。

相关推荐
2501_918126917 小时前
用html5写一个可输入1-100行1-100列的矩阵计算器
线性代数·矩阵
lqjun082717 小时前
平面的方程公式
线性代数·机器学习·平面
却道天凉_好个秋18 小时前
OpenCV(九):NumPy中的矩阵的检索与赋值
opencv·矩阵·numpy
shimly1234561 天前
(done) 矩阵分块计算和分块转置
线性代数·矩阵
modest_laowang1 天前
矩阵李群的李代数的几何意义
线性代数·矩阵·抽象代数·拓扑学
寒冬没有雪2 天前
矩阵的翻转与旋转
c++·算法·矩阵
Miraitowa_cheems2 天前
LeetCode算法日记 - Day 68: 猜数字大小II、矩阵中的最长递增路径
数据结构·算法·leetcode·职场和发展·贪心算法·矩阵·深度优先
元基时代3 天前
视频图文矩阵发布系统企业
大数据·人工智能·矩阵
爱学习的小鱼gogo3 天前
python 矩阵中寻找就接近的目标值 (矩阵-中等)含源码(八)
开发语言·经验分享·python·算法·职场和发展·矩阵
cliproxydaili3 天前
代理IP+账号矩阵:Cliproxy与TGX Account如何赋能品牌全球化表达?
网络协议·tcp/ip·矩阵