矩阵的正定(positive definite)性质的作用

1. 定义

注意,本文中正定和半正定矩阵不要求是对称或Hermite的。

2. 性质

3. 作用

(1)Ax=b直接法求解

|----------|--------------|
| cholesky | 实对称正定矩阵求解 |
| cholesky | 复共轭对称正定矩阵求解 |
| LDL | 实对称非正定矩阵求解 |
| LDL | 复共轭对称非正定矩阵求解 |
| LDL | 复对称矩阵求解 |
| LU | 实非对称矩阵求解 |
| LU | 复非对称矩阵求解 |

(2)特征值求解

在ARPACK(隐式重启Arnoldi算法)中,对K*x=lambda*M*x该广义特征值问题

M必须得是

|------------------|-------------------------------------------|----------------------|
| Mode | Operator | M |
| Shift | OP = inv[M]*K, and B = M. | 对称-正定 或Hemitian-正定 |
| Shift-and-invert | OP = (inv[K - sigma*M])*M, and B = M. | 对称-半正定 或Hemitian-半正定 |

注释:

  1. OP:operator,表示Arnoldi过程中与向量作用的算子,用户需要提供矩阵向量乘积w ← OPv
  2. M-inner product: <x ,y > =
  3. M-orthogonal: x, y称为M-orthogonal若<x ,y> = 0
  4. B: 用来定义M-inner product中的矩阵,用户需要提供矩阵向量乘积w ← Mv

Slepc有提及,若M不是正定也不是半正定的话,可以用EPS_GHIEP求解。

特征值中,正定或半正定性质对于 M 矩阵来说是一个优良属性,因为它确保了问题的物理可解性和数值计算的稳定性。例如,在结构动力学中,M 作为质量矩阵时,其正定性意味着系统的质量分布是非负的,这是物理上合理的。正定或半正定的 M 矩阵也有助于保证广义特征值问题解的良好性质,如确保所有特征值是实数且特征向量是良定义的。

然而,在某些情况下,M 矩阵可能不是正定或半正定的,这并不意味着广义特征值问题就无法求解。这些情况下,问题可能更加复杂,需要特别的数值方法来处理可能出现的数值不稳定性或解的不确定性。

相关推荐
18538162800余+1 天前
数字人分身 + 矩阵系统聚合的源码搭建与定制开发
线性代数·矩阵
Swift社区1 天前
LeetCode 378 - 有序矩阵中第 K 小的元素
算法·leetcode·矩阵
墨染点香1 天前
LeetCode 刷题【73. 矩阵置零】
算法·leetcode·矩阵
semantist@语校1 天前
第十九篇|东京世界日本语学校的结构数据建模:制度函数、能力矩阵与升学图谱
数据库·人工智能·线性代数·矩阵·prompt·github·数据集
点云SLAM1 天前
四元数 (Quaternion)在位姿(SE(3))表示下的各类导数(雅可比)知识(2)
人工智能·线性代数·算法·机器学习·slam·四元数·李群李代数
passxgx2 天前
10.3 马尔可夫矩阵、人口和经济
矩阵
彬彬醤2 天前
TikTok矩阵有哪些运营支撑方案?
大数据·网络·网络协议·tcp/ip·矩阵·udp·产品运营
云手机掌柜2 天前
下一代社媒运营工具:亚矩阵云手机集成AIGC与数字人技术引领内容革命
大数据·线性代数·智能手机·矩阵·aigc
索迪迈科技3 天前
算法题(203):矩阵最小路径和
线性代数·算法·矩阵