搜索二维矩阵[中等]

一、题目

给你一个满足下述两条属性的m x n整数矩阵:

【1】每行中的整数从左到右按非严格递增顺序排列。

【2】每行的第一个整数大于前一行的最后一个整数。

给你一个整数target,如果target在矩阵中,返回true;否则,返回false

示例 1:

输入: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出: true

示例 2:

输入: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
输出: false

m == matrix.length
n == matrix[i].length
1 <= m, n <= 100
-104 <= matrix[i][j], target <= 104

二、代码

【1】两次二分查找: 由于每行的第一个元素大于前一行的最后一个元素,且每行元素是升序的,所以每行的第一个元素大于前一行的第一个元素,因此矩阵第一列的元素是升序的。

我们可以对矩阵的第一列的元素二分查找,找到最后一个不大于目标值的元素,然后在该元素所在行中二分查找目标值是否存在。

java 复制代码
class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        int m = matrix.length, n = matrix[0].length;
        int low = 0, high = m * n - 1;
        while (low <= high) {
            int mid = (high - low) / 2 + low;
            int x = matrix[mid / n][mid % n];
            if (x < target) {
                low = mid + 1;
            } else if (x > target) {
                high = mid - 1;
            } else {
                return true;
            }
        }
        return false;
    }
}

时间复杂度: O(log ⁡m+log ⁡n)=O(log ⁡mn),其中mn分别是矩阵的行数和列数。
空间复杂度: O(1)

【2】一次二分查找: 若将矩阵每一行拼接在上一行的末尾,则会得到一个升序数组,我们可以在该数组上二分找到目标元素。代码实现时,可以二分升序数组的下标,将其映射到原矩阵的行和列上。

java 复制代码
class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        int m = matrix.length, n = matrix[0].length;
        int low = 0, high = m * n - 1;
        while (low <= high) {
            int mid = (high - low) / 2 + low;
            int x = matrix[mid / n][mid % n];
            if (x < target) {
                low = mid + 1;
            } else if (x > target) {
                high = mid - 1;
            } else {
                return true;
            }
        }
        return false;
    }
}

时间复杂度: O(log⁡mn),其中mn分别是矩阵的行数和列数。
空间复杂度: O(1)

两种方法殊途同归,都利用了二分查找,在二维矩阵上寻找目标值。值得注意的是,若二维数组中的一维数组的元素个数不一,方法二将会失效,而方法一则能正确处理。

相关推荐
近津薪荼12 分钟前
优选算法——前缀和(7):连续数组
算法
知识即是力量ol15 分钟前
Java 虚拟机:JVM篇
java·jvm·八股
快乐zbc42 分钟前
苍穹外卖 - 菜品起售/停售复习笔记
java·笔记
ArturiaZ1 小时前
【day29】
数据结构·c++·算法
Penge6661 小时前
ES + HDFS 存储架构:ES 做索引,HDFS 存数据
后端
MoonOutCloudBack1 小时前
VeRL 框架下 RL 微调 DeepSeek-7B,比较 PPO / GRPO 脚本的参数差异
人工智能·深度学习·算法·语言模型·自然语言处理
Cosmoshhhyyy1 小时前
《Effective Java》解读第41条:用标记接口定义类型
java·开发语言
NEXT061 小时前
TCP 与 UDP 核心差异及面试高分指南
前端·网络协议·面试
码云数智-大飞1 小时前
前端性能优化全链路实战:从加载速度到渲染效率的极致提速方案
前端·性能优化
NEXT061 小时前
HTTP 协议演进史:从 1.0 到 2.0
前端·网络协议·面试