机器学习 day38(有放回抽样、随机森林算法)

有放回抽样

  • 有放回抽样和无放回抽样的区别:有放回可以确保每轮抽取的结果不一定相同,无放回则每轮抽取的结果都相同
  • 在猫狗的例子中,我们使用"有放回抽样"来抽取10个样本,并组合为一个与原始数据集不同的新数据集,虽然新数据集中可能有重复的样本,也不一定包含原始数据集的所有样本。

随机森林算法

  • 装袋决策树算法(Bagged decision tree)是适用于决策树集合的一种算法,生成决策树集合的过程如下:
    • 对于一个大小为M的原始数据集,进行以下操作:
      • 使用"有放回抽样",生成一个大小为M的新数据集, 在新数据集上训练决策树
    • 完成一次后,重复这个操作,直到重复B次(B不需要特别大,因为收益会递减,100左右是比较合适的值)
  • 装袋决策树算法指的是:我们将训练示例放入虚拟袋中,并进行有放回的抽样
  • 装袋决策树算法会导致:根节点处的拆分基本相同,且根节点附近的子节点也很相似,所以最后生成的决策树有大部分相似。为了让每个节点处能选择的特征不同,从而生成更多不同的决策树,提出了鲁棒性更强的随机森林算法。
  • 随机森林算法:在每个拆分节点处,我们的最优子节点的选择不是从所有的特征中选,而是先随机一个小于n的数k,再在包含k个特征的子集中选择最优子节点(当n很大时,通常取k=根号n)
  • 为什么随机森林算法比单个决策树的算法的鲁棒性更强:因为随机森林已经用很多进行了细小修改的数据集来训练算法,并进行平均,所以即便训练集发生一些小变化,也不会对最终输出有很大影响
相关推荐
计算机sci论文精选2 分钟前
CVPR 2025 | 具身智能 | HOLODECK:一句话召唤3D世界,智能体的“元宇宙练功房”来了
人工智能·深度学习·机器学习·计算机视觉·机器人·cvpr·具身智能
秋难降12 分钟前
LRU缓存算法(最近最少使用算法)——工业界缓存淘汰策略的 “默认选择”
数据结构·python·算法
Christo333 分钟前
SIGKDD-2023《Complementary Classifier Induced Partial Label Learning》
人工智能·深度学习·机器学习
CoovallyAIHub2 小时前
线性复杂度破局!Swin Transformer 移位窗口颠覆高分辨率视觉建模
深度学习·算法·计算机视觉
JXL18602 小时前
机器学习概念(面试题库)
人工智能·机器学习
星期天要睡觉2 小时前
机器学习深度学习 所需数据的清洗实战案例 (结构清晰、万字解析、完整代码)包括机器学习方法预测缺失值的实践
人工智能·深度学习·机器学习·数据挖掘
点云SLAM2 小时前
Eigen中Dense 模块简要介绍和实战应用示例(最小二乘拟合直线、协方差矩阵计算和稀疏求解等)
线性代数·算法·机器学习·矩阵·机器人/slam·密集矩阵与向量·eigen库
岁月静好20252 小时前
BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain
人工智能·机器学习
renhongxia12 小时前
大模型微调RAG、LORA、强化学习
人工智能·深度学习·算法·语言模型