机器学习 day38(有放回抽样、随机森林算法)

有放回抽样

  • 有放回抽样和无放回抽样的区别:有放回可以确保每轮抽取的结果不一定相同,无放回则每轮抽取的结果都相同
  • 在猫狗的例子中,我们使用"有放回抽样"来抽取10个样本,并组合为一个与原始数据集不同的新数据集,虽然新数据集中可能有重复的样本,也不一定包含原始数据集的所有样本。

随机森林算法

  • 装袋决策树算法(Bagged decision tree)是适用于决策树集合的一种算法,生成决策树集合的过程如下:
    • 对于一个大小为M的原始数据集,进行以下操作:
      • 使用"有放回抽样",生成一个大小为M的新数据集, 在新数据集上训练决策树
    • 完成一次后,重复这个操作,直到重复B次(B不需要特别大,因为收益会递减,100左右是比较合适的值)
  • 装袋决策树算法指的是:我们将训练示例放入虚拟袋中,并进行有放回的抽样
  • 装袋决策树算法会导致:根节点处的拆分基本相同,且根节点附近的子节点也很相似,所以最后生成的决策树有大部分相似。为了让每个节点处能选择的特征不同,从而生成更多不同的决策树,提出了鲁棒性更强的随机森林算法。
  • 随机森林算法:在每个拆分节点处,我们的最优子节点的选择不是从所有的特征中选,而是先随机一个小于n的数k,再在包含k个特征的子集中选择最优子节点(当n很大时,通常取k=根号n)
  • 为什么随机森林算法比单个决策树的算法的鲁棒性更强:因为随机森林已经用很多进行了细小修改的数据集来训练算法,并进行平均,所以即便训练集发生一些小变化,也不会对最终输出有很大影响
相关推荐
芜湖xin6 分钟前
【题解-洛谷】P1706 全排列问题
算法·dfs
小喵喵生气气25 分钟前
Python60日基础学习打卡Day46
深度学习·机器学习
曦月逸霜2 小时前
第34次CCF-CSP认证真题解析(目标300分做法)
数据结构·c++·算法
海的诗篇_3 小时前
移除元素-JavaScript【算法学习day.04】
javascript·学习·算法
大写-凌祁3 小时前
论文阅读:HySCDG生成式数据处理流程
论文阅读·人工智能·笔记·python·机器学习
自动驾驶小卡3 小时前
A*算法实现原理以及实现步骤(C++)
算法
Unpredictable2223 小时前
【VINS-Mono算法深度解析:边缘化策略、初始化与关键技术】
c++·笔记·算法·ubuntu·计算机视觉
编程绿豆侠3 小时前
力扣HOT100之多维动态规划:1143. 最长公共子序列
算法·leetcode·动态规划
柯南二号3 小时前
深入理解 Agent 与 LLM 的区别:从智能体到语言模型
人工智能·机器学习·llm·agent