机器学习 day38(有放回抽样、随机森林算法)

有放回抽样

  • 有放回抽样和无放回抽样的区别:有放回可以确保每轮抽取的结果不一定相同,无放回则每轮抽取的结果都相同
  • 在猫狗的例子中,我们使用"有放回抽样"来抽取10个样本,并组合为一个与原始数据集不同的新数据集,虽然新数据集中可能有重复的样本,也不一定包含原始数据集的所有样本。

随机森林算法

  • 装袋决策树算法(Bagged decision tree)是适用于决策树集合的一种算法,生成决策树集合的过程如下:
    • 对于一个大小为M的原始数据集,进行以下操作:
      • 使用"有放回抽样",生成一个大小为M的新数据集, 在新数据集上训练决策树
    • 完成一次后,重复这个操作,直到重复B次(B不需要特别大,因为收益会递减,100左右是比较合适的值)
  • 装袋决策树算法指的是:我们将训练示例放入虚拟袋中,并进行有放回的抽样
  • 装袋决策树算法会导致:根节点处的拆分基本相同,且根节点附近的子节点也很相似,所以最后生成的决策树有大部分相似。为了让每个节点处能选择的特征不同,从而生成更多不同的决策树,提出了鲁棒性更强的随机森林算法。
  • 随机森林算法:在每个拆分节点处,我们的最优子节点的选择不是从所有的特征中选,而是先随机一个小于n的数k,再在包含k个特征的子集中选择最优子节点(当n很大时,通常取k=根号n)
  • 为什么随机森林算法比单个决策树的算法的鲁棒性更强:因为随机森林已经用很多进行了细小修改的数据集来训练算法,并进行平均,所以即便训练集发生一些小变化,也不会对最终输出有很大影响
相关推荐
一只侯子24 分钟前
Face AE Tuning
图像处理·笔记·学习·算法·计算机视觉
jianqiang.xue37 分钟前
别把 Scratch 当 “动画玩具”!图形化编程是算法思维的最佳启蒙
人工智能·算法·青少年编程·机器人·少儿编程
不许哈哈哈1 小时前
Python数据结构
数据结构·算法·排序算法
J***79392 小时前
后端在分布式系统中的数据分片
算法·哈希算法
y***86693 小时前
C机器学习.NET生态库应用
人工智能·机器学习
ChoSeitaku3 小时前
线代强化NO20|矩阵的相似与相似对角化|综合运用
线性代数·机器学习·矩阵
sin_hielo3 小时前
leetcode 2872
数据结构·算法·leetcode
二川bro4 小时前
AutoML自动化机器学习:Python实战指南
python·机器学习·自动化
dragoooon344 小时前
[优选算法专题八.分治-归并 ——NO.49 翻转对]
算法
AI科技星4 小时前
为什么宇宙无限大?
开发语言·数据结构·经验分享·线性代数·算法