机器学习 day38(有放回抽样、随机森林算法)

有放回抽样

  • 有放回抽样和无放回抽样的区别:有放回可以确保每轮抽取的结果不一定相同,无放回则每轮抽取的结果都相同
  • 在猫狗的例子中,我们使用"有放回抽样"来抽取10个样本,并组合为一个与原始数据集不同的新数据集,虽然新数据集中可能有重复的样本,也不一定包含原始数据集的所有样本。

随机森林算法

  • 装袋决策树算法(Bagged decision tree)是适用于决策树集合的一种算法,生成决策树集合的过程如下:
    • 对于一个大小为M的原始数据集,进行以下操作:
      • 使用"有放回抽样",生成一个大小为M的新数据集, 在新数据集上训练决策树
    • 完成一次后,重复这个操作,直到重复B次(B不需要特别大,因为收益会递减,100左右是比较合适的值)
  • 装袋决策树算法指的是:我们将训练示例放入虚拟袋中,并进行有放回的抽样
  • 装袋决策树算法会导致:根节点处的拆分基本相同,且根节点附近的子节点也很相似,所以最后生成的决策树有大部分相似。为了让每个节点处能选择的特征不同,从而生成更多不同的决策树,提出了鲁棒性更强的随机森林算法。
  • 随机森林算法:在每个拆分节点处,我们的最优子节点的选择不是从所有的特征中选,而是先随机一个小于n的数k,再在包含k个特征的子集中选择最优子节点(当n很大时,通常取k=根号n)
  • 为什么随机森林算法比单个决策树的算法的鲁棒性更强:因为随机森林已经用很多进行了细小修改的数据集来训练算法,并进行平均,所以即便训练集发生一些小变化,也不会对最终输出有很大影响
相关推荐
KyollBM10 分钟前
【Luogu】P9809 [SHOI2006] 作业 Homework (根号算法)
算法
jmxwzy15 分钟前
leetcode274.H指数
算法
纪元A梦39 分钟前
贪心算法应用:信用评分分箱问题详解
java·算法·贪心算法
格林威1 小时前
机器视觉检测如何使用360 度全景成像镜头进行AI 瑕疵检测
人工智能·深度学习·数码相机·机器学习·计算机视觉·视觉检测·相机
过河卒_zh15667662 小时前
9.13AI简报丨哈佛医学院开源AI模型,Genspark推出AI浏览器
人工智能·算法·microsoft·aigc·算法备案·生成合成类算法备案
D.....l2 小时前
冒泡排序与选择排序以及单链表与双链表
数据结构·算法·排序算法
sinat_286945192 小时前
Case-Based Reasoning用于RAG
人工智能·算法·chatgpt
Athenaand2 小时前
代码随想录算法训练营第50天 | 图论理论基础、深搜理论基础、98. 所有可达路径、广搜理论基础
算法·图论
地平线开发者2 小时前
征程 6 灰度图部署链路介绍
人工智能·算法·自动驾驶·汽车