机器学习中为什么需要梯度下降

在机器学习中,梯度下降是一种常用的优化算法,用于寻找损失函数的最小值。我们可以用一个简单的爬山场景来类比梯度下降的过程。

假设你被困在山上,需要找到一条通往山下的路。由于你是第一次来到这座山,对地形不熟悉,你只能通过尝试和观察周围环境来找到下山的路。梯度下降就是这个过程中的"尝试和观察"方法。

梯度下降的步骤如下:

  1. 你站在山上的一个随机位置,并观察周围的地形。你发现某个方向的地势较低,说明这个方向可能是下山的路。

  2. 你沿着这个方向走一步,然后再次观察周围的地形。如果地势继续降低,说明你走的方向是正确的,你可以继续沿着这个方向走。

  3. 如果地势不再降低,甚至开始上升,说明你走错了方向。这时,你需要重新观察周围的地形,寻找一个新的方向。

  4. 重复这个过程,直到你找到通往山下的路,或者到达一个足够接近山下的位置。

在机器学习中,这个过程是这样的:

  1. 你有一个损失函数,表示模型预测值与真实值之间的差距。损失函数的值越大,说明模型的预测越不准确。

  2. 你随机初始化模型参数,然后计算损失函数的值。这相当于站在山上的一个随机位置,并观察周围的地形。

  3. 你计算损失函数的梯度,梯度告诉你应该朝着哪个方向调整模型参数,以便在下次预测时减少损失,更接近真实值。这相当于寻找地势较低的方向。

  4. 你沿着梯度的方向调整模型参数,然后再次计算损失函数的值。如果损失函数的值降低,说明你走的方向是正确的,你可以继续沿着这个方向调整模型参数。

  5. 如果损失函数的值不再降低,甚至开始上升,说明你走错了方向。这时,你需要重新计算梯度,寻找一个新的方向。

  6. 重复这个过程,直到损失函数的值足够小,或者达到一个预设的迭代次数。

通过梯度下降,模型可以在每次迭代中逐步调整参数,使损失函数的值越来越小,从而提高预测的准确性。这个过程就像在山上寻找下山的路,通过不断地尝试和观察,最终找到通往山下的最佳路径。

相关推荐
西格电力科技27 分钟前
分布式光伏 “四可” 装置:“发电孤岛” 到 “电网友好” 的关键跨越
分布式·科技·机器学习·能源
kk哥88991 小时前
从数据分析到深度学习!Anaconda3 2025 全流程开发平台,安装步骤
人工智能
X***E4631 小时前
前端数据分析应用
前端·数据挖掘·数据分析
毕设源码-邱学长1 小时前
【开题答辩全过程】以 海鲜市场销售数据分析与预测系统为例,包含答辩的问题和答案
数据挖掘·数据分析
sheeta19982 小时前
LeetCode 每日一题笔记 日期:2025.11.24 题目:1018. 可被5整除的二进制前缀
笔记·算法·leetcode
陈天伟教授2 小时前
基于学习的人工智能(3)机器学习基本框架
人工智能·学习·机器学习·知识图谱
搞科研的小刘选手3 小时前
【厦门大学主办】第六届计算机科学与管理科技国际学术会议(ICCSMT 2025)
人工智能·科技·计算机网络·计算机·云计算·学术会议
fanstuck4 小时前
深入解析 PyPTO Operator:以 DeepSeek‑V3.2‑Exp 模型为例的实战指南
人工智能·语言模型·aigc·gpu算力
萤丰信息4 小时前
智慧园区能源革命:从“耗电黑洞”到零碳样本的蜕变
java·大数据·人工智能·科技·安全·能源·智慧园区