机器学习中为什么需要梯度下降

在机器学习中,梯度下降是一种常用的优化算法,用于寻找损失函数的最小值。我们可以用一个简单的爬山场景来类比梯度下降的过程。

假设你被困在山上,需要找到一条通往山下的路。由于你是第一次来到这座山,对地形不熟悉,你只能通过尝试和观察周围环境来找到下山的路。梯度下降就是这个过程中的"尝试和观察"方法。

梯度下降的步骤如下:

  1. 你站在山上的一个随机位置,并观察周围的地形。你发现某个方向的地势较低,说明这个方向可能是下山的路。

  2. 你沿着这个方向走一步,然后再次观察周围的地形。如果地势继续降低,说明你走的方向是正确的,你可以继续沿着这个方向走。

  3. 如果地势不再降低,甚至开始上升,说明你走错了方向。这时,你需要重新观察周围的地形,寻找一个新的方向。

  4. 重复这个过程,直到你找到通往山下的路,或者到达一个足够接近山下的位置。

在机器学习中,这个过程是这样的:

  1. 你有一个损失函数,表示模型预测值与真实值之间的差距。损失函数的值越大,说明模型的预测越不准确。

  2. 你随机初始化模型参数,然后计算损失函数的值。这相当于站在山上的一个随机位置,并观察周围的地形。

  3. 你计算损失函数的梯度,梯度告诉你应该朝着哪个方向调整模型参数,以便在下次预测时减少损失,更接近真实值。这相当于寻找地势较低的方向。

  4. 你沿着梯度的方向调整模型参数,然后再次计算损失函数的值。如果损失函数的值降低,说明你走的方向是正确的,你可以继续沿着这个方向调整模型参数。

  5. 如果损失函数的值不再降低,甚至开始上升,说明你走错了方向。这时,你需要重新计算梯度,寻找一个新的方向。

  6. 重复这个过程,直到损失函数的值足够小,或者达到一个预设的迭代次数。

通过梯度下降,模型可以在每次迭代中逐步调整参数,使损失函数的值越来越小,从而提高预测的准确性。这个过程就像在山上寻找下山的路,通过不断地尝试和观察,最终找到通往山下的最佳路径。

相关推荐
G皮T13 分钟前
【Elasticsearch】检索高亮
大数据·elasticsearch·搜索引擎·全文检索·kibana·检索·高亮
牛客企业服务35 分钟前
2025年AI面试推荐榜单,数字化招聘转型优选
人工智能·python·算法·面试·职场和发展·金融·求职招聘
视觉语言导航1 小时前
RAL-2025 | 清华大学数字孪生驱动的机器人视觉导航!VR-Robo:面向视觉机器人导航与运动的现实-模拟-现实框架
人工智能·深度学习·机器人·具身智能
糖葫芦君1 小时前
Policy Gradient【强化学习的数学原理】
算法
**梯度已爆炸**1 小时前
自然语言处理入门
人工智能·自然语言处理
ctrlworks1 小时前
楼宇自控核心功能:实时监控设备运行,快速诊断故障,赋能设备寿命延长
人工智能·ba系统厂商·楼宇自控系统厂家·ibms系统厂家·建筑管理系统厂家·能耗监测系统厂家
BFT白芙堂2 小时前
睿尔曼系列机器人——以创新驱动未来,重塑智能协作新生态(上)
人工智能·机器学习·机器人·协作机器人·复合机器人·睿尔曼机器人
Brduino脑机接口技术答疑2 小时前
脑机新手指南(二十一)基于 Brainstorm 的 MEG/EEG 数据分析(上篇)
数据挖掘·数据分析
aneasystone本尊2 小时前
使用 MCP 让 Claude Code 集成外部工具
人工智能
静心问道2 小时前
SEW:无监督预训练在语音识别中的性能-效率权衡
人工智能·语音识别