机器学习中为什么需要梯度下降

在机器学习中,梯度下降是一种常用的优化算法,用于寻找损失函数的最小值。我们可以用一个简单的爬山场景来类比梯度下降的过程。

假设你被困在山上,需要找到一条通往山下的路。由于你是第一次来到这座山,对地形不熟悉,你只能通过尝试和观察周围环境来找到下山的路。梯度下降就是这个过程中的"尝试和观察"方法。

梯度下降的步骤如下:

  1. 你站在山上的一个随机位置,并观察周围的地形。你发现某个方向的地势较低,说明这个方向可能是下山的路。

  2. 你沿着这个方向走一步,然后再次观察周围的地形。如果地势继续降低,说明你走的方向是正确的,你可以继续沿着这个方向走。

  3. 如果地势不再降低,甚至开始上升,说明你走错了方向。这时,你需要重新观察周围的地形,寻找一个新的方向。

  4. 重复这个过程,直到你找到通往山下的路,或者到达一个足够接近山下的位置。

在机器学习中,这个过程是这样的:

  1. 你有一个损失函数,表示模型预测值与真实值之间的差距。损失函数的值越大,说明模型的预测越不准确。

  2. 你随机初始化模型参数,然后计算损失函数的值。这相当于站在山上的一个随机位置,并观察周围的地形。

  3. 你计算损失函数的梯度,梯度告诉你应该朝着哪个方向调整模型参数,以便在下次预测时减少损失,更接近真实值。这相当于寻找地势较低的方向。

  4. 你沿着梯度的方向调整模型参数,然后再次计算损失函数的值。如果损失函数的值降低,说明你走的方向是正确的,你可以继续沿着这个方向调整模型参数。

  5. 如果损失函数的值不再降低,甚至开始上升,说明你走错了方向。这时,你需要重新计算梯度,寻找一个新的方向。

  6. 重复这个过程,直到损失函数的值足够小,或者达到一个预设的迭代次数。

通过梯度下降,模型可以在每次迭代中逐步调整参数,使损失函数的值越来越小,从而提高预测的准确性。这个过程就像在山上寻找下山的路,通过不断地尝试和观察,最终找到通往山下的最佳路径。

相关推荐
xrgs_shz5 分钟前
MATLAB读入不同类型图像并显示图像和相关信息
图像处理·计算机视觉·matlab
网络真危险!!11 分钟前
【数据分析】认清、明确
数据挖掘·数据分析
菜鸟学Python12 分钟前
Python 数据分析核心库大全!
开发语言·python·数据挖掘·数据分析
C++忠实粉丝12 分钟前
计算机网络socket编程(4)_TCP socket API 详解
网络·数据结构·c++·网络协议·tcp/ip·计算机网络·算法
WeeJot嵌入式17 分钟前
卷积神经网络:深度学习中的图像识别利器
人工智能
糖豆豆今天也要努力鸭25 分钟前
torch.__version__的torch版本和conda list的torch版本不一致
linux·pytorch·python·深度学习·conda·torch
脆皮泡泡26 分钟前
Ultiverse 和web3新玩法?AI和GameFi的结合是怎样
人工智能·web3
机器人虎哥29 分钟前
【8210A-TX2】Ubuntu18.04 + ROS_ Melodic + TM-16多线激光 雷达评测
人工智能·机器学习
码银37 分钟前
冲破AI 浪潮冲击下的 迷茫与焦虑
人工智能
用户377913629475539 分钟前
【循环神经网络】只会Python,也能让AI写出周杰伦风格的歌词
人工智能·算法