机器学习之梯度下降法直观理解

形象化举例,由上图所示,假如最开始,我们在一座大山上的某处位置,因为到处都是陌生的不知道下山的路,所以只能摸索着根据直觉,走一步算一步。在此过程中,每走到一个位置的时候,都会求解当前位置的梯度,沿着梯度的负方向,也就是当前最陡峭的位置向下走一步,然后继续求解当前位置梯度,向这一步所在位置沿着最陡峭最易下山的位置走一步。不断循环求梯度,就这样一步步地走下去,一直走到我们觉得已经到了山脚。

当然这样走下去,有可能我们不能走到山脚,而是到了某一个局部的山势低处。由此,从上面的解释可以看出,梯度下降不一定能够找到全局的最优解,有可能是一个局部的最优解。当然,如果损失函数是凸函数,梯度下降法得到的解就一定是全局最优解。

核心思想归纳:

  1. 初始化参数,随机选取取值范围内的任意数;
  2. 迭代操作:
    a) 计算当前梯度;
    b) 修改新的变量;
    c) 计算朝最陡的下坡方向走一步;
    d) 判断是否需要终止,如否,返回a)
  3. 得到全局最优解或者接近全局最优解。
相关推荐
橘颂TA19 分钟前
【剑斩OFFER】算法的暴力美学——只出现一次的数字 ||
算法·leetcode·动态规划
LCG元23 分钟前
垂直Agent才是未来:详解让大模型"专业对口"的三大核心技术
人工智能
我不是QI42 分钟前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
操练起来1 小时前
【昇腾CANN训练营·第八期】Ascend C生态兼容:基于PyTorch Adapter的自定义算子注册与自动微分实现
人工智能·pytorch·acl·昇腾·cann
KG_LLM图谱增强大模型1 小时前
[500页电子书]构建自主AI Agent系统的蓝图:谷歌重磅发布智能体设计模式指南
人工智能·大模型·知识图谱·智能体·知识图谱增强大模型·agenticai
想唱rap1 小时前
C++ map和set
linux·运维·服务器·开发语言·c++·算法
声网1 小时前
活动推荐丨「实时互动 × 对话式 AI」主题有奖征文
大数据·人工智能·实时互动
caiyueloveclamp1 小时前
【功能介绍03】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI溯源篇】
人工智能·信息可视化·powerpoint·ai生成ppt·aippt
q***48411 小时前
Vanna AI:告别代码,用自然语言轻松查询数据库,领先的RAG2SQL技术让结果更智能、更精准!
人工智能·microsoft
LCG元1 小时前
告别空谈!手把手教你用LangChain构建"能干活"的垂直领域AI Agent
人工智能