机器学习之梯度下降法直观理解

形象化举例,由上图所示,假如最开始,我们在一座大山上的某处位置,因为到处都是陌生的不知道下山的路,所以只能摸索着根据直觉,走一步算一步。在此过程中,每走到一个位置的时候,都会求解当前位置的梯度,沿着梯度的负方向,也就是当前最陡峭的位置向下走一步,然后继续求解当前位置梯度,向这一步所在位置沿着最陡峭最易下山的位置走一步。不断循环求梯度,就这样一步步地走下去,一直走到我们觉得已经到了山脚。

当然这样走下去,有可能我们不能走到山脚,而是到了某一个局部的山势低处。由此,从上面的解释可以看出,梯度下降不一定能够找到全局的最优解,有可能是一个局部的最优解。当然,如果损失函数是凸函数,梯度下降法得到的解就一定是全局最优解。

核心思想归纳:

  1. 初始化参数,随机选取取值范围内的任意数;
  2. 迭代操作:
    a) 计算当前梯度;
    b) 修改新的变量;
    c) 计算朝最陡的下坡方向走一步;
    d) 判断是否需要终止,如否,返回a)
  3. 得到全局最优解或者接近全局最优解。
相关推荐
GIS数据转换器7 分钟前
基于GIS的宠物救助服务平台
大数据·人工智能·科技·机器学习·无人机·智慧城市·宠物
Hx_Ma168 分钟前
Leecode题知识点(25,61,82)
算法·leetcode·链表
qwy7152292581639 分钟前
3-用摄像头拍摄图像及视频
人工智能·opencv·音视频
AI街潜水的八角10 分钟前
基于YOLO26苹果水果缺陷检测系统1:苹果水果缺陷检测数据集说明(含下载链接)
人工智能·深度学习·神经网络
Solar202511 分钟前
工程材料企业如何借助数字化工具突破获客瓶颈:方法论与实践路径
大数据·人工智能·物联网
audyxiao00111 分钟前
会议热点扫描|通过智能交通顶级会议IEEE IV 2025看自动驾驶领域研究热点
人工智能·机器学习·自动驾驶·热点分析·ieee iv
青槿吖12 分钟前
【趣味图解】线程同步与通讯:从抢奶茶看透synchronized、ReentrantLock和wait/notify
java·开发语言·jvm·算法
2401_8384725119 分钟前
C++20概念(Concepts)入门指南
开发语言·c++·算法
茶栀(*´I`*)19 分钟前
【视觉探索】OpenCV 全景导论:从数字图像基石到核心模块体系
人工智能·opencv·计算机视觉
点云SLAM24 分钟前
似然函数(Likelihood Function)和最大似然估计
算法·机器学习·概率论·数理统计·最大似然估计·似然函数·概率分布