【广度优先搜索】【网格】【割点】1263. 推箱子

作者推荐

视频算法专题

涉及知识点

广度优先搜索 网格 割点 并集查找

LeetCode:1263. 推箱子

「推箱子」是一款风靡全球的益智小游戏,玩家需要将箱子推到仓库中的目标位置。

游戏地图用大小为 m x n 的网格 grid 表示,其中每个元素可以是墙、地板或者是箱子。

现在你将作为玩家参与游戏,按规则将箱子 'B' 移动到目标位置 'T' :

玩家用字符 'S' 表示,只要他在地板上,就可以在网格中向上、下、左、右四个方向移动。

地板用字符 '.' 表示,意味着可以自由行走。

墙用字符 '#' 表示,意味着障碍物,不能通行。

箱子仅有一个,用字符 'B' 表示。相应地,网格上有一个目标位置 'T'。

玩家需要站在箱子旁边,然后沿着箱子的方向进行移动,此时箱子会被移动到相邻的地板单元格。记作一次「推动」。

玩家无法越过箱子。

返回将箱子推到目标位置的最小 推动 次数,如果无法做到,请返回 -1。

示例 1:

输入:grid = [["#","#","#","#","#","#"],

["#","T","#","#","#","#"],

["#",".",".","B",".","#"],

["#",".","#","#",".","#"],

["#",".",".",".","S","#"],

["#","#","#","#","#","#"]]

输出:3

解释:我们只需要返回推箱子的次数。

示例 2:

输入:grid = [["#","#","#","#","#","#"],

["#","T","#","#","#","#"],

["#",".",".","B",".","#"],

["#","#","#","#",".","#"],

["#",".",".",".","S","#"],

["#","#","#","#","#","#"]]

输出:-1

示例 3:

输入:grid = [["#","#","#","#","#","#"],

["#","T",".",".","#","#"],

["#",".","#","B",".","#"],

["#",".",".",".",".","#"],

["#",".",".",".","S","#"],

["#","#","#","#","#","#"]]

输出:5

解释:向下、向左、向左、向上再向上。

提示:

m == grid.length

n == grid[i].length

1 <= m, n <= 20

grid 仅包含字符 '.', '#', 'S' , 'T', 以及 'B'。

grid 中 'S', 'B' 和 'T' 各只能出现一个。

01广度优先搜索

状态:箱子所在行列,人所在行列

人试图向上下左右移动。以左移为例。
{ 如果人可以左移,人左移,加到队首 箱子不在左边 如果人和箱子都可以左移,人箱子左移,加到队尾 箱子在人左边 \begin{cases} 如果人可以左移,人左移,加到队首 & 箱子不在左边\\ 如果人和箱子都可以左移,人箱子左移,加到队尾 &箱子在人左边\\ \end{cases} {如果人可以左移,人左移,加到队首如果人和箱子都可以左移,人箱子左移,加到队尾箱子不在左边箱子在人左边

妙在无需考虑: 箱子对人的影响。

代码

核心代码

cpp 复制代码
class CBFS
{
public:
	CBFS(int iStatuCount, int iInit = -1):m_iStatuCount(iStatuCount),m_iInit(iInit)
	{
		m_res.assign(iStatuCount, iInit);
	}
	bool Peek(int& statu)
	{
		if (m_que.empty())
		{
			return false;
		}
		statu = m_que.front();
		m_que.pop_front();
		return true;
	}
	void PushBack(int statu, int value)
	{
		if (m_iInit != m_res[statu])
		{
			return;
		}
		m_res[statu] = value;
		m_que.push_back(statu);
	}
	void PushFront(int statu, int value)
	{
		if (m_iInit != m_res[statu])
		{
			return;
		}
		m_res[statu] = value;
		m_que.push_front(statu);
	}
	int Get(int statu)
	{
		return m_res[statu];
	}
private:
	const int m_iStatuCount;
	const int m_iInit;
	deque<int> m_que;
	vector<int> m_res;
};

class CBFS2 : protected CBFS
{
public:
	CBFS2(int iStatuCount1,int iStatuCount2, int iInit = -1) :CBFS(iStatuCount1* iStatuCount2, iInit ), m_iStatuCount2(iStatuCount2)
	{
		
	}
	bool Peek(int& statu1,int& statu2 )
	{
		int statu;
		if (!CBFS::Peek(statu))
		{
			return false;
		}
		statu1 = statu / m_iStatuCount2;
		statu2 = statu % m_iStatuCount2;
		return true;
	}
	void PushBack(int statu1,int statu2, int value)
	{
		CBFS::PushBack(statu1 * m_iStatuCount2 + statu2, value);
	}
	void PushFront(int statu1, int statu2, int value)
	{
		CBFS::PushFront(statu1 * m_iStatuCount2 + statu2, value);
	}
	int Get(int statu1, int statu2)
	{
		return CBFS::Get(statu1 * m_iStatuCount2 + statu2);
	}
private:
	const int m_iStatuCount2;
};

class CBFS3 : protected CBFS2
{
public:
	CBFS3(int iStatuCount1, int iStatuCount2, int iStatuCount3,int iInit = -1) :CBFS2(iStatuCount1, iStatuCount2* iStatuCount3, iInit), m_iStatuCount3(iStatuCount3)
	{

	}
	bool Peek(int& statu1, int& statu2,int& statu3 )
	{
		int statu23;
		if (!CBFS2::Peek(statu1,statu23))
		{
			return false;
		}
		statu2 = statu23 / m_iStatuCount3;
		statu3 = statu23 % m_iStatuCount3;
		return true;
	}
	void PushBack(int statu1, int statu2,int statu3, int value)
	{
		CBFS2::PushBack(statu1 , statu2*m_iStatuCount3+statu3, value);
	}
	void PushFront(int statu1, int statu2, int statu3, int value)
	{
		CBFS2::PushFront(statu1, statu2 * m_iStatuCount3 + statu3, value);
	}
	int Get(int statu1, int statu2, int statu3)
	{
		return CBFS2::Get(statu1, statu2 * m_iStatuCount3 + statu3);
	}
	const int m_iStatuCount3;
};

class CBFS4 : protected CBFS3
{
public:
	CBFS4(int iStatuCount1, int iStatuCount2, int iStatuCount3,int iStatuCount4, int iInit = -1) :CBFS3(iStatuCount1, iStatuCount2, iStatuCount3* iStatuCount4, iInit), m_iStatuCount4(iStatuCount4)
	{

	}
	bool Peek(int& statu1, int& statu2, int& statu3,int& statu4)
	{
		int statu34;
		if (!CBFS3::Peek(statu1, statu2,statu34))
		{
			return false;
		}
		statu3 = statu34 / m_iStatuCount4;
		statu4 = statu34 % m_iStatuCount4;
		return true;
	}
	void PushBack(int statu1, int statu2, int statu3,int statu4, int value)
	{
		CBFS3::PushBack(statu1, statu2 , statu3* m_iStatuCount4+ statu4, value);
	}
	void PushFront(int statu1, int statu2, int statu3, int statu4, int value)
	{
		CBFS3::PushFront(statu1, statu2, statu3 * m_iStatuCount4 + statu4, value);
	}
	int Get(int statu1, int statu2, int statu3, int statu4)
	{
		return CBFS3::Get(statu1, statu2, statu3 * m_iStatuCount4 + statu4);
	}
	const int m_iStatuCount4;
};

template<class T>
class CEnumGrid
{
public:
	static  void EnumGrid(const vector<vector<T>>& grid,std::function<void(int,int,T)> call )
	{
		for (int r = 0; r < grid.size(); r++)
		{
			for (int c = 0; c < grid.front().size(); c++)
			{
				call(r, c, grid[r][c]);
			}
		}
	}
};
class Solution {
public:
	int minPushBox(vector<vector<char>>& grid) {
		m_r = grid.size();
		m_c = grid[0].size();
		int move[4][2] = { {1,0},{-1,0},{0,1},{0,-1} };
		auto CanMove = [&grid](int r, int c)
		{
			if ((r < 0) || (r >= grid.size()))
			{
				return false;
			}
			if ((c < 0) || (c >= grid[0].size()))
			{
				return false;
			}
			return '#' != grid[r][c];
		};
		int sr, sc, br, bc,tr,tc;
		CEnumGrid<char>::EnumGrid(grid, [&](int r, int c, char ch)
			{
				if ('B' == ch)
				{
					br = r;
					bc = c;
				}
				if ('S' == ch)
				{
					sr = r;
					sc = c;
				}
				if ('T' == ch)
				{
					tr = r;
					tc = c;
				}
			});
		CBFS4 bfs(m_r, m_c, m_r, m_c);
		bfs.PushBack(sr, sc, br, bc, 0);
		int r1, c1, r2, c2;
		while (bfs.Peek(r1, c1, r2, c2))
		{
			const int dis = bfs.Get(r1, c1, r2, c2);
			if ((r2 == tr) && (c2 == tc))
			{
				return dis;
			}
			for (const auto& [mr,mc] : move)
			{
				auto r3 = r1 + mr;
				auto c3 = c1 + mc;
				if (!CanMove(r3, c3))
				{
					continue;
				}
				if ((r3 == r2) && (c3 == c2))
				{//必须移动箱子
					auto r4 = r3 + mr;
					auto c4 = c3 + mc;
					if (!CanMove(r4, c4))
					{
						continue;
					}
					bfs.PushBack(r3, c3, r4, c4, dis + 1);
				}
				else
				{
					bfs.PushFront(r3, c3, r2, c2, dis );
				}
			}
		}
		return -1;
	}
	int m_r, m_c;
};

测试用例

cpp 复制代码
template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{
	vector<vector<char>> grid;
	
	{
		Solution sln;
		grid = { {'#','#','#','#','#','#'},
			 {'#','T','#','#','#','#'},
			 {'#','.','.','B','.','#'},
			 {'#','.','#','#','.','#'},
			 {'#','.','.','.','S','#'},
			 {'#','#','#','#','#','#'} };
		auto res = sln.minPushBox(grid);
		Assert(3, res);
	}
	{
		Solution sln;
		grid = { {'#','#','#','#','#','#'},
			 {'#','T','.','.','#','#'},
			 {'#','.','#','B','.','#'},
			 {'#','.','.','.','.','#'},
			 {'#','.','.','.','S','#'},
			 {'#','#','#','#','#','#'} };
		auto res = sln.minPushBox(grid);
		Assert(5, res);
	}
}

想法而已,过于复杂:割点、并集查找

状态:箱子所在行列,人所在方位(上右下左) 。

箱子右移的条件:

人能移到箱子左边,箱子能右移(右边没出界,不是墙)

人可能被箱子阻拦:
{ 如果没箱子,人无法到达 无法到达。 e l s e 箱子不是割点 能到达 e l s e 是割点,源点和目标点到时间戳都大于(小于)割点时间戳 能到达。 o t h e r 不能到达。 \begin{cases} 如果没箱子,人无法到达& 无法到达。\\ else 箱子不是割点 & 能到达 \\ else 是割点,源点和目标点到时间戳都大于(小于)割点时间戳 & 能到达。\\ other & 不能到达。\\ \end{cases} ⎩ ⎨ ⎧如果没箱子,人无法到达else箱子不是割点else是割点,源点和目标点到时间戳都大于(小于)割点时间戳other无法到达。能到达能到达。不能到达。

写了下代码,太复杂了。
错误原因 :源点和目标点到时间戳都大于(小于)割点时间戳则能到达是错误的。因为:割点可能被多次访问,所以需要记录割点所有的时间戳,在同一个时间段的可以访问。但这要修改割点函数。抱着一根筋精神,改进了割点函数。

代码

cpp 复制代码
class CUnionFind
{
public:
	CUnionFind(int iSize) :m_vNodeToRegion(iSize)
	{
		for (int i = 0; i < iSize; i++)
		{
			m_vNodeToRegion[i] = i;
		}
		m_iConnetRegionCount = iSize;
	}	
	CUnionFind(vector<vector<int>>& vNeiBo):CUnionFind(vNeiBo.size())
	{
		for (int i = 0; i < vNeiBo.size(); i++) {
			for (const auto& n : vNeiBo[i]) {
				Union(i, n);
			}
		}
	}
	int GetConnectRegionIndex(int iNode)
	{
		int& iConnectNO = m_vNodeToRegion[iNode];
		if (iNode == iConnectNO)
		{
			return iNode;
		}
		return iConnectNO = GetConnectRegionIndex(iConnectNO);
	}
	void Union(int iNode1, int iNode2)
	{
		const int iConnectNO1 = GetConnectRegionIndex(iNode1);
		const int iConnectNO2 = GetConnectRegionIndex(iNode2);
		if (iConnectNO1 == iConnectNO2)
		{
			return;
		}
		m_iConnetRegionCount--;
		if (iConnectNO1 > iConnectNO2)
		{
			UnionConnect(iConnectNO1, iConnectNO2);
		}
		else
		{
			UnionConnect(iConnectNO2, iConnectNO1);
		}
	}

	bool IsConnect(int iNode1, int iNode2)
	{
		return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);
	}
	int GetConnetRegionCount()const
	{
		return m_iConnetRegionCount;
	}
	vector<int> GetNodeCountOfRegion()//各联通区域的节点数量
	{
		const int iNodeSize = m_vNodeToRegion.size();
		vector<int> vRet(iNodeSize);
		for (int i = 0; i < iNodeSize; i++)
		{
			vRet[GetConnectRegionIndex(i)]++;
		}
		return vRet;
	}
	std::unordered_map<int, vector<int>> GetNodeOfRegion()
	{
		std::unordered_map<int, vector<int>> ret;
		const int iNodeSize = m_vNodeToRegion.size();
		for (int i = 0; i < iNodeSize; i++)
		{
			ret[GetConnectRegionIndex(i)].emplace_back(i);
		}
		return ret;
	}
private:
	void UnionConnect(int iFrom, int iTo)
	{
		m_vNodeToRegion[iFrom] = iTo;
	}
	vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引
	int m_iConnetRegionCount;
};

class CUnionFindMST
{
public:
	CUnionFindMST(const int iNodeSize) :m_uf(iNodeSize)
	{

	}
	void AddEdge(const int iNode1, const int iNode2, int iWeight)
	{
		if (m_uf.IsConnect(iNode1, iNode2))
		{
			return;
		}
		m_iMST += iWeight;
		m_uf.Union(iNode1, iNode2);
	}
	void AddEdge(const vector<int>& v)
	{
		AddEdge(v[0], v[1], v[2]);
	}
	int MST()
	{
		if (m_uf.GetConnetRegionCount() > 1)
		{
			return -1;
		}
		return m_iMST;
	}
private:
	int m_iMST = 0;
	CUnionFind m_uf;
};

class CUnionFindDirect
{
public:
	CUnionFindDirect(int iSize)
	{
		m_vRoot.resize(iSize);
		iota(m_vRoot.begin(), m_vRoot.end(), 0);
	}
	void Connect(bool& bConflic, bool& bCyc, int iFrom, int iTo)
	{
		bConflic = bCyc = false;
		if (iFrom != m_vRoot[iFrom])
		{
			bConflic = true;
		}

		Fresh(iTo);
		if (m_vRoot[iTo] == iFrom)
		{
			bCyc = true;
		}
		if (bConflic || bCyc)
		{
			return;
		}

		m_vRoot[iFrom] = m_vRoot[iTo];
	}
	int GetMaxDest(int iFrom)
	{
		Fresh(iFrom);
		return m_vRoot[iFrom];
	}	
private:
	int Fresh(int iNode)
	{
		if (m_vRoot[iNode] == iNode)
		{
			return iNode;
		}
		return m_vRoot[iNode] = Fresh(m_vRoot[iNode]);
	}
	vector<int> m_vRoot;
};

class CNearestMST
{
public:
	CNearestMST(const int iNodeSize) :m_bDo(iNodeSize), m_vDis(iNodeSize, INT_MAX), m_vNeiTable(iNodeSize)
	{

	}
	void Init(const vector<vector<int>>& edges)
	{
		for (const auto& v : edges)
		{
			Add(v);
		}
	}
	void Add(const vector<int>& v)
	{
		m_vNeiTable[v[0]].emplace_back(v[1], v[2]);
		m_vNeiTable[v[1]].emplace_back(v[0], v[2]);
	}
	int MST(int start)
	{
		int next = start;
		while ((next = AddNode(next)) >= 0);
		return m_iMST;
	}
	int MST(int iNode1, int iNode2, int iWeight)
	{
		m_bDo[iNode1] = true;
		for (const auto& it : m_vNeiTable[iNode1])
		{
			if (m_bDo[it.first])
			{
				continue;
			}
			m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);
		}
		m_iMST = iWeight;

		int next = iNode2;
		while ((next = AddNode(next)) >= 0);
		return m_iMST;
	}

private:
	int AddNode(int iCur)
	{
		m_bDo[iCur] = true;
		for (const auto& it : m_vNeiTable[iCur])
		{
			if (m_bDo[it.first])
			{
				continue;
			}
			m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);
		}

		int iMinIndex = -1;
		for (int i = 0; i < m_vDis.size(); i++)
		{
			if (m_bDo[i])
			{
				continue;
			}
			if ((-1 == iMinIndex) || (m_vDis[i] < m_vDis[iMinIndex]))
			{
				iMinIndex = i;
			}
		}
		if (-1 != iMinIndex)
		{
			if (INT_MAX == m_vDis[iMinIndex])
			{
				m_iMST = -1;
				return -1;
			}
			m_iMST += m_vDis[iMinIndex];
		}

		return iMinIndex;
	}
	vector<bool> m_bDo;
	vector<long long> m_vDis;
	vector < vector<std::pair<int, int>>> m_vNeiTable;
	long long m_iMST = 0;
};

class CBFSDis
{
public:
	CBFSDis(vector<vector<int>>& vNeiB, vector<int> start)
	{
		m_vDis.assign(vNeiB.size(), m_iNotMayDis);
		queue<int> que;
		for (const auto& n : start)
		{
			m_vDis[n] = 0;
			que.emplace(n);
		}
		while (que.size())
		{
			const int cur = que.front();
			que.pop();
			for (const auto next : vNeiB[cur])
			{
				if (m_iNotMayDis != m_vDis[next])
				{
					continue;
				}
				m_vDis[next] = m_vDis[cur] + 1;
				que.emplace(next);
			}
		}
	}
public:
	const int m_iNotMayDis = 1e9;
	vector<int> m_vDis;
};

class C01BFSDis
{
public:
	C01BFSDis(vector<vector<int>>& vNeiB0, vector<vector<int>>& vNeiB1, int s)
	{
		m_vDis.assign(vNeiB0.size(), -1);
		std::deque<std::pair<int, int>> que;
		que.emplace_back(s, 0);
		while (que.size())
		{
			auto it = que.front();
			const int cur = it.first;
			const int dis = it.second;
			que.pop_front();
			if (-1 != m_vDis[cur])
			{
				continue;
			}
			m_vDis[cur] = it.second;
			for (const auto next : vNeiB0[cur])
			{
				if (-1 != m_vDis[next])
				{
					continue;
				}
				que.emplace_front(next, dis);

			}

			for (const auto next : vNeiB1[cur])
			{
				if (-1 != m_vDis[next])
				{
					continue;
				}
				que.emplace_back(next, dis + 1);
			}
		}
	}
public:
	vector<int> m_vDis;
};
//堆(优先队列)优化迪杰斯特拉算法 狄克斯特拉(Dijkstra)算法详解
typedef pair<long long, int> PAIRLLI;
class  CHeapDis
{
public:
	CHeapDis(int n)
	{
		m_vDis.assign(n, -1);
	}
	void Cal(int start, const vector<vector<pair<int, int>>>& vNeiB)
	{
		std::priority_queue<PAIRLLI, vector<PAIRLLI>, greater<PAIRLLI>> minHeap;
		minHeap.emplace(0, start);
		while (minHeap.size())
		{
			const long long llDist = minHeap.top().first;
			const int iCur = minHeap.top().second;
			minHeap.pop();
			if (-1 != m_vDis[iCur])
			{
				continue;
			}
			m_vDis[iCur] = llDist;
			for (const auto& it : vNeiB[iCur])
			{
				minHeap.emplace(llDist + it.second, it.first);
			}
		}
	}
	vector<long long> m_vDis;
};


//朴素迪杰斯特拉算法
class CN2Dis
{
public:
	CN2Dis(int iSize) :m_iSize(iSize), DIS(m_vDis), PRE(m_vPre)
	{

	}
	void Cal(int start, const vector<vector<pair<int, int>>>& vNeiB)
	{
		m_vDis.assign(m_iSize, -1);
		m_vPre.assign(m_iSize, -1);
		vector<bool> vDo(m_iSize);//点是否已处理
		auto AddNode = [&](int iNode)
		{
			//const int iPreNode = m_vPre[iNode];
			long long llPreDis = m_vDis[iNode];

			vDo[iNode] = true;
			for (const auto& it : vNeiB[iNode])
			{
				if (vDo[it.first])
				{
					continue;
				}

				if ((-1 == m_vDis[it.first]) || (it.second + llPreDis < m_vDis[it.first]))
				{
					m_vDis[it.first] = it.second + llPreDis;
					m_vPre[it.first] = iNode;
				}
			}

			long long llMinDis = LLONG_MAX;
			int iMinIndex = -1;
			for (int i = 0; i < m_vDis.size(); i++)
			{
				if (vDo[i])
				{
					continue;
				}
				if (-1 == m_vDis[i])
				{
					continue;
				}
				if (m_vDis[i] < llMinDis)
				{
					iMinIndex = i;
					llMinDis = m_vDis[i];
				}
			}
			return (LLONG_MAX == llMinDis) ? -1 : iMinIndex;
		};

		int next = start;
		m_vDis[start] = 0;
		while (-1 != (next = AddNode(next)));
	}
	void Cal(int start, const vector<vector<int>>& mat)
	{
		m_vDis.assign(m_iSize, LLONG_MAX);
		m_vPre.assign(m_iSize, -1);
		vector<bool> vDo(m_iSize);//点是否已处理
		auto AddNode = [&](int iNode)
		{
			long long llPreDis = m_vDis[iNode];
			vDo[iNode] = true;
			for (int i = 0; i < m_iSize; i++)
			{
				if (vDo[i])
				{
					continue;
				}
				const long long llCurDis = mat[iNode][i];
				if (llCurDis <= 0)
				{
					continue;
				}
				m_vDis[i] = min(m_vDis[i], m_vDis[iNode] + llCurDis);
			}
			long long llMinDis = LLONG_MAX;
			int iMinIndex = -1;
			for (int i = 0; i < m_iSize; i++)
			{
				if (vDo[i])
				{
					continue;
				}
				if (m_vDis[i] < llMinDis)
				{
					iMinIndex = i;
					llMinDis = m_vDis[i];
				}
			}
			if (LLONG_MAX == llMinDis)
			{
				return -1;
			}

			m_vPre[iMinIndex] = iNode;
			return iMinIndex;
		};

		int next = start;
		m_vDis[start] = 0;
		while (-1 != (next = AddNode(next)));
	}
	const vector<long long>& DIS;
	const vector<int>& PRE;
private:
	const int m_iSize;
	vector<long long> m_vDis;//各点到起点的最短距离
	vector<int>  m_vPre;//最短路径的前一点
};

//多源码路径
template<class T, T INF = 1000 * 1000 * 1000>
class CFloyd
{
public:
	CFloyd(const  vector<vector<T>>& mat)
	{
		m_vMat = mat;
		const int n = mat.size();
		for (int i = 0; i < n; i++)
		{//通过i中转
			for (int i1 = 0; i1 < n; i1++)
			{
				for (int i2 = 0; i2 < n; i2++)
				{
					//此时:m_vMat[i1][i2] 表示通过[0,i)中转的最短距离
					m_vMat[i1][i2] = min(m_vMat[i1][i2], m_vMat[i1][i] + m_vMat[i][i2]);
					//m_vMat[i1][i2] 表示通过[0,i]中转的最短距离
				}
			}
		}
	};
	vector<vector<T>> m_vMat;
};

class CParentToNeiBo
{
public:
	CParentToNeiBo(const vector<int>& parents)
	{
		m_vNeiBo.resize(parents.size());
		for (int i = 0; i < parents.size(); i++)
		{
			if (-1 == parents[i])
			{
				m_root = i;
			}
			else
			{
				m_vNeiBo[parents[i]].emplace_back(i);
			}
		}
	}
	vector<vector<int>> m_vNeiBo;
	int m_root = -1;
};

class CNeiBo2
{
public:
	CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase)
	{
		m_vNeiB.resize(n);
	}
	CNeiBo2(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase)
	{
		m_vNeiB.resize(n);
		for (const auto& v : edges)
		{
			m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase);
			if (!bDirect)
			{
				m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase);
			}
		}
	}
	inline void Add(int iNode1, int iNode2)
	{
		iNode1 -= m_iBase;
		iNode2 -= m_iBase;
		m_vNeiB[iNode1].emplace_back(iNode2);
		if (!m_bDirect)
		{
			m_vNeiB[iNode2].emplace_back(iNode1);
		}
	}
	const int m_iN;
	const bool m_bDirect;
	const int m_iBase;
	vector<vector<int>> m_vNeiB;
};

class CNeiBo3
{
public:
	CNeiBo3(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)
	{
		m_vNeiB.resize(n);
		AddEdges(edges, bDirect, iBase);
	}
	CNeiBo3(int n)
	{
		m_vNeiB.resize(n);
	}
	void AddEdges(vector<vector<int>>& edges, bool bDirect, int iBase = 0)
	{
		for (const auto& v : edges)
		{
			m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);
			if (!bDirect)
			{
				m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);
			}
		}
	}
	vector<vector<std::pair<int, int>>> m_vNeiB;
};


template<class T, T INF = 1000 * 1000 * 1000>
class CNeiBoToMat
{
public:
	CNeiBoToMat(int n, const vector<vector<int>>& edges, bool bDirect = false, bool b1Base = false)
	{
		m_vMat.assign(n, vector<int>(n, INF));
		for (int i = 0; i < n; i++)
		{
			m_vMat[i][i] = 0;
		}
		for (const auto& v : edges)
		{
			m_vMat[v[0] - b1Base][v[1] - b1Base] = v[2];
			if (!bDirect)
			{
				m_vMat[v[1] - b1Base][v[0] - b1Base] = v[2];
			}
		}
	}
	vector<vector<int>> m_vMat;
};
class CCutEdge
{
public:
	CCutEdge(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size())
	{
		m_vTime.assign(m_iSize, -1);
		m_vCutEdges.resize(m_iSize);
		for (int i = 0; i < m_iSize; i++)
		{
			if (-1 != m_vTime[i])
			{
				continue;
			}
			m_iRegionCount++;
			dfs(i, -1, vNeiB);
		}
	}
	bool IsCut(int node1, int node2)
	{
		return m_vCutEdges[node1].count(node2);
	}
	bool IsCut(int node)
	{
		return m_vCutEdges[node].size();
	}
	int RegionCount()const
	{
		return m_iRegionCount;
	}
protected:
	int dfs(int cur, int parent, const vector<vector<int>>& vNeiB)
	{
		auto& curTime = m_vTime[cur];
		curTime = m_iTime++;
		int iRet = curTime;
		for (const auto& next : vNeiB[cur])
		{
			if (next == parent)
			{
				continue;
			}
			if (-1 != m_vTime[next])
			{
				iRet = min(iRet, m_vTime[next]);
				continue;
			}
			int iNextTime = dfs(next, cur, vNeiB);
			if (iNextTime > curTime)
			{
				m_vCutEdges[cur].emplace(next);
			}
			iRet = min(iRet, iNextTime);
		}
		return iRet;
	}
	vector<int> m_vTime;
	int m_iTime = 0;
	int m_iRegionCount = 0;
	vector<std::unordered_set<int>> m_vCutEdges;
	const int m_iSize;
};

//割点
class CCutPoint
{
public:
	CCutPoint(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size())
	{
		m_vTime.assign(m_iSize, -1);
		m_vVisitMin.assign(m_iSize, -1);
		for (int i = 0; i < m_iSize; i++)
		{
			if (-1 != m_vTime[i])
			{
				continue;
			}
			m_iRegionCount++;
			dfs(i, -1, vNeiB);
		}
	}
	int RegionCount()const
	{
		return m_iRegionCount;
	}
	const vector<int>& CutPoints()const
	{
		return m_vCutPoints;
	}
	const vector<int>& Tinme()const { return m_vTime; }
protected:
	void dfs(int cur, int parent, const vector<vector<int>>& vNeiB)
	{
		auto& curTime = m_vTime[cur];
		auto& visitMin = m_vVisitMin[cur];
		curTime = m_iTime++;
		visitMin = curTime;
		int iMax = -1;
		int iChildNum = 0;
		for (const auto& next : vNeiB[cur])
		{
			if (next == parent)
			{
				continue;
			}
			if (-1 != m_vTime[next])
			{
				visitMin = min(visitMin, m_vTime[next]);
				continue;
			}
			iChildNum++;
			dfs(next, cur, vNeiB);
			visitMin = min(visitMin, m_vVisitMin[next]);
			iMax = max(iMax, m_vVisitMin[next]);
		}
		if (-1 == parent)
		{
			if (iChildNum >= 2)
			{
				m_vCutPoints.emplace_back(cur);
			}
		}
		else
		{
			if (iMax >= curTime)
			{
				m_vCutPoints.emplace_back(cur);
			}
		}
	}
	vector<int> m_vTime;//各节点到达时间,从0开始。 -1表示未处理
	vector<int> m_vVisitMin;// 
	int m_iTime = 0;
	int m_iRegionCount = 0;
	vector<int> m_vCutPoints;
	const int m_iSize;
};

class CTopSort
{
public:
	//vBackNeiBo[1] = {2} 表示 1完成后,才能完成2
	template<class T >
	void Init(vector<T>& vPreToNext)
	{
		m_c = vPreToNext.size();
		vector<int> vInDeg(m_c);
		for (int cur = 0; cur < m_c; cur++)
		{
			for (const auto& next : vPreToNext[cur])
			{
				vInDeg[next]++;
			}
		}
		queue<int> que;
		for (int i = 0; i < m_c; i++)
		{
			if (0 == vInDeg[i])
			{
				que.emplace(i);
				m_vLeaf.emplace_back(i);
				OnDo(-1, i);
			}
		}

		while (que.size())
		{
			const int cur = que.front();
			que.pop();
			for (const auto& next : vPreToNext[cur])
			{
				vInDeg[next]--;
				if (0 == vInDeg[next])
				{
					que.emplace(next);
					OnDo(cur, next);
				}
			}
		};
	}
	virtual void OnDo(int pre, int cur) = 0;
	int m_c;
	vector<int> m_vLeaf;
};


struct CVec
{
	int r;
	int c;
};
struct CPos
{	
	int r = 0, c = 0;
	int ToMask()const { return s_MaxC * r + c; };
	bool operator==(const CPos& o)const
	{
		return (r == o.r) && (c == o.c);
	}
	CPos operator+(const CVec& v)const
	{
		return { r + v.r, c + v.c };
	}
	CPos operator-(const CVec& v)const
	{
		return{ r - v.r, c - v.c };
	}
	CVec operator-(const CPos& o)const
	{
		return {r - o.r,c- o.c};
	}
	inline static  int s_MaxC = 10'000;
};

class CRange
{
public:
	CRange(int rCount, int cCount, std::function<bool(int, int)> funVilidCur):m_r(rCount),m_c(cCount), m_funVilidCur(funVilidCur)
	{

	}
	bool Vilid(CPos pos)const
	{
		return (pos.r >= 0) && (pos.r < m_r) && (pos.c >= 0) && (pos.c < m_c) && m_funVilidCur(pos.r, pos.c);
	}
	const int m_r, m_c;
protected:
	std::function<bool(int, int)> m_funVilidCur;
};
class  CGridToNeiBo
{
public:
	static vector<vector<int>> ToNeiBo(int rCount, int cCount, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext)
	{
		vector<vector<int>> vNeiBo(rCount * cCount);
		auto Move = [&](int preR, int preC, int r, int c)
		{
			if ((r < 0) || (r >= rCount))
			{
				return;
			}
			if ((c < 0) || (c >= cCount))

			{
				return;
			}
			if (funVilidCur(preR, preC) && funVilidNext(r, c))
			{
				vNeiBo[cCount*preR+preC].emplace_back(r*cCount+ c);
			}
		};

		for (int r = 0; r < rCount; r++)
		{
			for (int c = 0; c < cCount; c++)
			{
				Move(r, c, r + 1, c);
				Move(r, c, r - 1, c);
				Move(r, c, r, c + 1);
				Move(r, c, r, c - 1);
			}
		}
		return vNeiBo;
	}
};

template<class T = int>
class CEnumGrid
{
public:	
	static  void EnumGrid(vector<vector<T>>& grid, std::function<void(int, int, T&)> call)
	{
		for (int r = 0; r < grid.size(); r++)
		{
			for (int c = 0; c < grid.front().size(); c++)
			{
				call(r, c, grid[r][c]);
			}
		}
	}
	static  void EnumPos(vector<vector<T>>& grid, vector<tuple<T, CPos&>> vRes)
	{
		EnumGrid(grid, [&vRes](int curR, int curC, T& curV)
			{
				for (auto& [value, pos] : vRes)
				{
					if (curV == value)
					{
						pos = { curR,curC };
					}
				}
			});
	}
	inline static const CVec s_Move4[4] = { {1,0},{0,1},{-1,0},{0,-1} };//上右下左
	enum {UP=0,RIGHT,DOWN,LEFT};
};

class CEnumGridEdge
{
public:
	CEnumGridEdge(int r, int c, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext) :m_r(r), m_c(c)
	{
		m_funVilidCur = funVilidCur;
		m_funVilidNext = funVilidNext;
		m_vNext.assign(m_r, vector < vector<pair<int, int>>>(m_c));
		Init();
	}
	vector<vector<int>> BFS(vector<pair<int, int>> start, const int endr = -1, const int endc = -1)
	{
		vector<vector<int>> vDis(m_r, vector<int>(m_c, -1));
		queue<pair<int, int>> que;
		for (const auto& [r, c] : start)
		{
			vDis[r][c] = 0;
			que.emplace(make_pair(r, c));
		}
		while (que.size())
		{
			const auto [r, c] = que.front();
			que.pop();
			for (const auto [nr, nc] : m_vNext[r][c])
			{
				if (-1 != vDis[nr][nc])
				{
					continue;
				}
				vDis[nr][nc] = vDis[r][c] + 1;
				if ((endr == nr) && (endc == nc))
				{
					break;
				}
				que.emplace(make_pair(nr, nc));
			}
		}
		return vDis;
	}
	const int m_r, m_c;
	vector < vector < vector<pair<int, int>>>> m_vNext;
protected:
	void Init()
	{
		for (int r = 0; r < m_r; r++)
		{
			for (int c = 0; c < m_c; c++)
			{
				Move(r, c, r + 1, c);
				Move(r, c, r - 1, c);
				Move(r, c, r, c + 1);
				Move(r, c, r, c - 1);
			}
		}
	}
	void Move(int preR, int preC, int r, int c)
	{
		if ((r < 0) || (r >= m_r))
		{
			return;
		}
		if ((c < 0) || (c >= m_c))

		{
			return;
		}
		if (m_funVilidCur(preR, preC) && m_funVilidNext(r, c))
		{
			m_vNext[preR][preC].emplace_back(r, c);
		}
	};
	std::function<bool(int, int)> m_funVilidCur, m_funVilidNext;
};

class CBFS
{
public:
	CBFS(int iStatuCount, int iInit = -1) :m_iStatuCount(iStatuCount), m_iInit(iInit)
	{
		m_res.assign(iStatuCount, iInit);
	}
	bool Peek(int& statu)
	{
		if (m_que.empty())
		{
			return false;
		}
		statu = m_que.front();
		m_que.pop_front();
		return true;
	}
	void PushBack(int statu, int value)
	{
		if (m_iInit != m_res[statu])
		{
			return;
		}
		m_res[statu] = value;
		m_que.push_back(statu);
	}
	void PushFront(int statu, int value)
	{
		if (m_iInit != m_res[statu])
		{
			return;
		}
		m_res[statu] = value;
		m_que.push_front(statu);
	}
	int Get(int statu)
	{
		return m_res[statu];
	}
private:
	const int m_iStatuCount;
	const int m_iInit;
	deque<int> m_que;
	vector<int> m_res;
};

class CBFS2 : protected CBFS
{
public:
	CBFS2(int iStatuCount1, int iStatuCount2, int iInit = -1) :CBFS(iStatuCount1* iStatuCount2, iInit), m_iStatuCount2(iStatuCount2)
	{

	}
	bool Peek(int& statu1, int& statu2)
	{
		int statu;
		if (!CBFS::Peek(statu))
		{
			return false;
		}
		statu1 = statu / m_iStatuCount2;
		statu2 = statu % m_iStatuCount2;
		return true;
	}
	void PushBack(int statu1, int statu2, int value)
	{
		CBFS::PushBack(statu1 * m_iStatuCount2 + statu2, value);
	}
	void PushFront(int statu1, int statu2, int value)
	{
		CBFS::PushFront(statu1 * m_iStatuCount2 + statu2, value);
	}
	int Get(int statu1, int statu2)
	{
		return CBFS::Get(statu1 * m_iStatuCount2 + statu2);
	}
private:
	const int m_iStatuCount2;
};

class CBFS3 : protected CBFS2
{
public:
	CBFS3(int iStatuCount1, int iStatuCount2, int iStatuCount3, int iInit = -1) :CBFS2(iStatuCount1, iStatuCount2* iStatuCount3, iInit), m_iStatuCount3(iStatuCount3)
	{

	}
	bool Peek(int& statu1, int& statu2, int& statu3)
	{
		int statu23;
		if (!CBFS2::Peek(statu1, statu23))
		{
			return false;
		}
		statu2 = statu23 / m_iStatuCount3;
		statu3 = statu23 % m_iStatuCount3;
		return true;
	}
	void PushBack(int statu1, int statu2, int statu3, int value)
	{
		CBFS2::PushBack(statu1, statu2 * m_iStatuCount3 + statu3, value);
	}
	void PushFront(int statu1, int statu2, int statu3, int value)
	{
		CBFS2::PushFront(statu1, statu2 * m_iStatuCount3 + statu3, value);
	}
	int Get(int statu1, int statu2, int statu3)
	{
		return CBFS2::Get(statu1, statu2 * m_iStatuCount3 + statu3);
	}
	const int m_iStatuCount3;
};

class CBFS4 : protected CBFS3
{
public:
	CBFS4(int iStatuCount1, int iStatuCount2, int iStatuCount3, int iStatuCount4, int iInit = -1) :CBFS3(iStatuCount1, iStatuCount2, iStatuCount3* iStatuCount4, iInit), m_iStatuCount4(iStatuCount4)
	{

	}
	bool Peek(int& statu1, int& statu2, int& statu3, int& statu4)
	{
		int statu34;
		if (!CBFS3::Peek(statu1, statu2, statu34))
		{
			return false;
		}
		statu3 = statu34 / m_iStatuCount4;
		statu4 = statu34 % m_iStatuCount4;
		return true;
	}
	void PushBack(int statu1, int statu2, int statu3, int statu4, int value)
	{
		CBFS3::PushBack(statu1, statu2, statu3 * m_iStatuCount4 + statu4, value);
	}
	void PushFront(int statu1, int statu2, int statu3, int statu4, int value)
	{
		CBFS3::PushFront(statu1, statu2, statu3 * m_iStatuCount4 + statu4, value);
	}
	int Get(int statu1, int statu2, int statu3, int statu4)
	{
		return CBFS3::Get(statu1, statu2, statu3 * m_iStatuCount4 + statu4);
	}
	const int m_iStatuCount4;
};


class CCutPointEx
{
public:
	CCutPointEx(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size())
	{
		m_vTime.assign(m_iSize, -1);	
		m_vCutRegion.resize(m_iSize);
		m_vNodeToRegion.assign(m_iSize,-1);
		m_vCut.assign(m_iSize, false);
		for (int i = 0; i < m_iSize; i++)
		{
			if (-1 != m_vTime[i])
			{
				continue;
			}
			dfs(i, -1, vNeiB);
			m_iRegionCount++;
		}
	}
	bool Visit(int src, int dest, int iCut)
	{
		if (m_vNodeToRegion[src] != m_vNodeToRegion[dest])
		{
			return false;//不在一个连通区域
		}
		if (!m_vCut[iCut])
		{
			return true;
		}
		const int r1 = GetCutRegion(iCut,src);
		const int r2 = GetCutRegion(iCut, dest);
		return r1 == r2;
	}
protected:
	int dfs(int cur, int parent, const vector<vector<int>>& vNeiB)
	{		
		auto& curTime = m_vTime[cur];			
		m_vNodeToRegion[cur] = m_iRegionCount;
		curTime = m_iTime++;		
		int iCutChild=0;
		int iMinTime = curTime;
		for (const auto& next : vNeiB[cur])
		{
			if (next == parent)
			{
				continue;
			}
			if (-1 != m_vTime[next])
			{
				iMinTime = min(iMinTime, m_vTime[next]);
				continue;
			}			
			int iChildBeginTime = m_iTime;
			const int iChildMinTime = dfs(next, cur, vNeiB);
			iMinTime = min(iMinTime, iChildMinTime);
			if (iChildMinTime >= curTime)
			{
				iCutChild++;
				m_vCutRegion[cur].push_back({ iChildBeginTime,m_iTime });
			};
		}
		m_vCut[cur] = (iCutChild + (-1 != parent)) >= 2;
		return iMinTime;
	}	
	int GetCutRegion(int iCut, int iNode)const 
	{
		const auto& v = m_vCutRegion[iCut];
		auto it = std::upper_bound(v.begin(), v.end(), m_vTime[iNode],[](int time, const std::pair<int, int>& pr) {return time < pr.first; });
		if (v.begin() == it)
		{
			return v.size();
		}
		--it;
		return (it->second > m_vTime[iNode]) ? (it - v.begin()) : v.size();
	}
	int m_iTime = 0;	
	const int m_iSize;
	int m_iRegionCount=0;
	vector<int> m_vTime;//各节点到达时间,从0开始。 -1表示未处理
	vector<bool> m_vCut;
	vector<int> m_vNodeToRegion;
	vector<vector<pair<int,int>>> m_vCutRegion;
};

class Solution {
public:
	int minPushBox(vector<vector<char>>& grid) {		
		auto Vilid = [&](int r, int c) {return '#' != grid[r][c]; };
		CRange range(grid.size(), grid.front().size(), Vilid);	
		CPos::s_MaxC = range.m_c;		
		auto neiBo = CGridToNeiBo::ToNeiBo(range.m_r, range.m_c, Vilid, Vilid);		
		CCutPointEx cutPoint(neiBo);
		auto Visit = [&](CPos s, CPos d, CPos b){			
			return range.Vilid(d) && cutPoint.Visit(s.ToMask(),d.ToMask(),b.ToMask());
		};
		CBFS3 bfs(range.m_r, range.m_c, 4);
		CPos sInit,tInit,bInit;
		CEnumGrid<char>::EnumPos(grid, { { 'B',bInit },{'T',tInit},{'S',sInit} });
		auto MovePeo = [&](CPos peo, CPos bCur, int iCurDis)		{
			for (int i = 0; i < 4; i++) {
				if (Visit(peo, bCur + CEnumGrid<>::s_Move4[i], bCur)) {
					bfs.PushFront(bCur.r, bCur.c, i, iCurDis);
				}
			}
		};
		MovePeo(sInit, bInit, 0);
		int br1, bc1, pd;
		while (bfs.Peek(br1, bc1, pd))		{
			CPos bCur = { br1,bc1 };
			CPos peo = bCur + CEnumGrid<>::s_Move4[pd];
			const int CurDis = bfs.Get(br1, bc1, pd);
			if (bCur == tInit )			{
				return CurDis;	}	
			MovePeo(peo, bCur, CurDis);
			auto dest = bCur - CEnumGrid<>::s_Move4[pd];
			if (range.Vilid(dest)){
				bfs.PushBack(dest.r, dest.c, pd, CurDis + 1);
			}
		}			
		return -1;
	}
};

2023年4月

class CGridCanVisit

{

public:

CGridCanVisit(const vector<vector>& bCanVisit, int r, int c) :m_bCanVisit(bCanVisit), m_r(m_bCanVisit.size()), m_c(m_bCanVisit[0].size())

{

m_vDis.assign(m_r, vector(m_c,INT_MAX/2));

Dist(r, c);

}

bool Vilid(const int r,const int c )

{

if ((r < 0) || (r >= m_r))

{

return false;

}

if ((c < 0) || (c >= m_c))

{

return false;

}

return true;

}

const vector<vector>& Dis()const

{

return m_vDis;

}

const vector<vector>& m_bCanVisit;

private:

//INT_MAX/2 表示无法到达

void Dist(int r, int c)

{

m_vDis.assign(m_r, vector(m_c, INT_MAX / 2));

vector<vector> vHasDo(m_r, vector(m_c));

std::queue<std::pair<int, int>> que;

auto Add = [&](const int& r, const int& c, const int& iDis)

{

if (!Vilid(r, c))

{

return;

}

if (vHasDo[r][c])

{

return;

}

if (!m_bCanVisit[r][c])

{

vHasDo[r][c] = true;

return;

}

if (iDis >= m_vDis[r][c])

{

return;

}

que.emplace(r, c);

m_vDis[r][c] = iDis;

vHasDo[r][c] = true;

};

Add(r, c, 0);

while (que.size())

{

const int r = que.front().first;

const int c = que.front().second;

que.pop();

const int iDis = m_vDis[r][c];

Add(r + 1, c, iDis + 1);

Add(r - 1, c, iDis + 1);

Add(r, c + 1, iDis + 1);

Add(r, c - 1, iDis + 1);

}

}

vector<vector> m_vDis;

const int m_r;

const int m_c;

};

class Solution {

public:

int minPushBox(vector<vector>& grid) {

std::pair<int, int> pB, pS, pT;

m_r = grid.size();

m_c = grid[0].size();

vector<vector> vCanVisit(m_r, vector(m_c));

for (int r = 0; r < m_r; r++)

{

for (int c = 0; c < m_c; c++)

{

const char ch = grid[r][c];

if ('S' == ch)

{

pS = std::make_pair(r, c);

}

else if ('T' == ch)

{

pT = std::make_pair(r, c);

}

else if ('B' == ch)

{

pB = std::make_pair(r, c);

}

vCanVisit[r][c] = '#' != ch;

}

}

std::unordered_set vHasDo;

std::queue<std::tuple<int, int, int, int>> que;

auto Add = [&](int r, int c, int iSR, int iSC)

{

const int iMask = r * 100 * 100 * 100 + c * 100 * 100 + iSR * 100 + iSC;

if (vHasDo.count(iMask))

{

return;

}

vHasDo.insert(iMask);

que.emplace(r, c, iSR, iSC);

};

auto Move = [&]( CGridCanVisit& gc,int r, int c, int iOldR, int iOldC, int iSR, int iSC)

{

if (!gc.Vilid(r, c))

{

return;//非法行列好

}

if (!gc.m_bCanVisit[r][c])

{//rc是墙无法推动

return;

}

auto vDis = gc.Dis();

const int r2 = iOldR * 2 - r;

const int c2 = iOldC * 2 - c;

if (!gc.Vilid(r2, c2))

{

return;

}

if (vDis[r2][c2] >= 1000 * 1000)

{

return;//人没有地方占,无法推

}

Add(r, c, iOldR, iOldC);

};

std::queue<std::tuple<int, int, int, int>> preQue;

preQue.emplace(pB.first, pB.second, pS.first, pS.second);

for (int i = 0; preQue.size(); i++ )

{

while (preQue.size())

{

auto cur = preQue.front();

if ((get<0>(cur) == pT.first) && (get<1>(cur) == pT.second))

{

return i;

}

preQue.pop();

auto tmp = vCanVisit;

tmp[get<0>(cur)][get<1>(cur)] = false;

CGridCanVisit gc(tmp, get<2>(cur), get<3>(cur));

Move(gc, get<0>(cur)+1, get<1>(cur), get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));

Move(gc, get<0>(cur)-1, get<1>(cur), get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));

Move(gc, get<0>(cur), get<1>(cur)+1, get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));

Move(gc, get<0>(cur), get<1>(cur)-1, get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));

}

preQue.swap(que);

}

return -1;

}

int m_r;

int m_c;

};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境: VS2022 C++17

如无特殊说明,本算法用**C++**实现。

相关推荐
ALISHENGYA18 分钟前
全国青少年信息学奥林匹克竞赛(信奥赛)备考实战之分支结构(switch语句)
数据结构·算法
tianmu_sama18 分钟前
[Effective C++]条款38-39 复合和private继承
开发语言·c++
chengooooooo20 分钟前
代码随想录训练营第二十七天| 贪心理论基础 455.分发饼干 376. 摆动序列 53. 最大子序和
算法·leetcode·职场和发展
jackiendsc27 分钟前
Java的垃圾回收机制介绍、工作原理、算法及分析调优
java·开发语言·算法
羚羊角uou33 分钟前
【C++】优先级队列以及仿函数
开发语言·c++
姚先生9737 分钟前
LeetCode 54. 螺旋矩阵 (C++实现)
c++·leetcode·矩阵
FeboReigns39 分钟前
C++简明教程(文章要求学过一点C语言)(1)
c语言·开发语言·c++
FeboReigns42 分钟前
C++简明教程(文章要求学过一点C语言)(2)
c语言·开发语言·c++
264玫瑰资源库1 小时前
从零开始C++棋牌游戏开发之第二篇:初识 C++ 游戏开发的基本架构
开发语言·c++·架构
游是水里的游2 小时前
【算法day20】回溯:子集与全排列问题
算法