NLP - 神经网络与反向传播

使用神经网络进行命名实体识别(二值词窗分类)

根据上下文窗口 建立词向量

通过一个神经网络层,通过一个逻辑分类器,得到这个概率是属于特定实体词的预测概率。

另一个分类器来比较说明 这个词是哪个实体类型(比较概率)


手工实现梯度下降

基础知识

雅可比矩阵:梯度的推广

  • 给定一个具有 m m m 输出和 n n n 输入的函数:
    f ( x ) = [ f 1 ( x 1 , x 2 , . . . , x n ) , . . . , f m ( x 1 , x 2 , . . . , x n ) ] \boldsymbol{f}(\boldsymbol{x})=[f_1(x_1,x_2,...,x_n),...,f_m(x_1,x_2,...,x_n)] f(x)=[f1(x1,x2,...,xn),...,fm(x1,x2,...,xn)]
  • 它的雅可比矩阵是一个 m × n m\times n m×n 偏导数矩阵:
    ∂ f ∂ x = [ ∂ f 1 ∂ x 1 ... ∂ f 1 ∂ x n ⋮ ⋱ ⋮ ∂ f m ∂ x 1 ... ∂ f m ∂ x n ] ( ∂ f ∂ x ) i j = ∂ f i ∂ x j \dfrac{\partial\boldsymbol{f}}{\partial\boldsymbol{x}}=\begin{bmatrix}\frac{\partial f_1}{\partial x_1}&\dots&\frac{\partial f_1}{\partial x_n}\\\vdots&\ddots&\vdots\\\frac{\partial f_m}{\partial x_1}&\dots&\frac{\partial f_m}{\partial x_n}\end{bmatrix} \color{red}{\boxed{\left(\frac{\partial f}{\partial x}\right)_{ij}=\frac{\partial f_i}{\partial x_j}}} ∂x∂f= ∂x1∂f1⋮∂x1∂fm...⋱...∂xn∂f1⋮∂xn∂fm (∂x∂f)ij=∂xj∂fi

链式法则

  • 对于一变量函数的复合:乘导数
    z = 3 y y = x 2 d z d x = d z d y d y d x = ( 3 ) ( 2 x ) = 6 x \begin{aligned} &z=3y \\ &y=x^{2} \\ &\begin{aligned}\frac{dz}{dx}=\frac{dz}{dy}\frac{dy}{dx}=(3)(2x)=6x\end{aligned} \end{aligned} z=3yy=x2dxdz=dydzdxdy=(3)(2x)=6x
  • 对于同时多个变量:乘以雅可比行列式
    h = f ( z ) z = W x + b ∂ h ∂ x = ∂ h ∂ z ∂ z ∂ x = . . . \begin{aligned} &\boldsymbol{h}=f(\boldsymbol{z}) \\ &z=\boldsymbol{W}\boldsymbol{x}+\boldsymbol{b} \\ &\begin{aligned}\frac{\partial\boldsymbol{h}}{\partial\boldsymbol{x}}=\frac{\partial\boldsymbol{h}}{\partial\boldsymbol{z}}\frac{\partial\boldsymbol{z}}{\partial\boldsymbol{x}}=...\end{aligned} \end{aligned} h=f(z)z=Wx+b∂x∂h=∂z∂h∂x∂z=...

雅可比行列式示例:逐元素激活函数

h = f ( z ) ,   ∂ h ∂ z 是什么 ? h , z ∈ R n \boldsymbol{h}= f( \boldsymbol{z}) ,\ \, \frac {\partial\boldsymbol{h}}{\partial\boldsymbol{z}}是什么? \ \ \ \ \ \ \ \ h,z\in\mathbb{R}^n h=f(z), ∂z∂h是什么? h,z∈Rn h i = f ( z i ) h_i=f(z_i) hi=f(zi)
( ∂ h ∂ z ) i j = ∂ h i ∂ z j = ∂ ∂ z j f ( z i ) 雅可比行列式的定义 = { f ′ ( z i ) if i = j 0 if otherwise 常规的一个变量的导数 \begin{aligned} \left(\frac{\partial\boldsymbol{h}}{\partial\boldsymbol{z}}\right){ij}& =\frac{\partial h{i}}{\partial z_{j}}=\frac{\partial}{\partial z_{j}}f(z_{i}) \ \ \ \ \ \ 雅可比行列式的定义 \\ &=\begin{cases}f'(z_i)\quad\text{if }i=j\\0\quad \text{if otherwise}\end{cases} \ \ \ \ \ 常规的一个变量的导数 \end{aligned} (∂z∂h)ij=∂zj∂hi=∂zj∂f(zi) 雅可比行列式的定义={f′(zi)if i=j0if otherwise 常规的一个变量的导数
∂ h ∂ z = ( f ′ ( z 1 ) 0 ⋱ 0 f ′ ( z n ) ) = diag ⁡ ( f ′ ( z ) ) \left.\frac{\partial\boldsymbol{h}}{\partial\boldsymbol{z}}=\left(\begin{array}{ccc}f'(z_1)&&0\\&\ddots&\\0&&f'(z_n)\end{array}\right.\right)=\operatorname{diag}(\boldsymbol{f'}(\boldsymbol{z})) ∂z∂h= f′(z1)0⋱0f′(zn) =diag(f′(z))

其他雅可比行列式

∂ ∂ x ( W x + b ) = W ∂ ∂ b ( W x + b ) = I (单位矩阵) ∂ ∂ u ( u T h ) = h T \begin{aligned} &\begin{aligned}\frac{\partial}{\partial\boldsymbol{x}}(\boldsymbol{W}\boldsymbol{x}+\boldsymbol{b})=\boldsymbol{W}\end{aligned} \\ &\begin{aligned}\frac{\partial}{\partial\boldsymbol{b}}(\boldsymbol{W}\boldsymbol{x}+\boldsymbol{b})&=\boldsymbol{I}&\text{(单位矩阵)}\end{aligned} \\ &\begin{aligned}\frac{\partial}{\partial\boldsymbol{u}}(\boldsymbol{u}^T\boldsymbol{h})=\boldsymbol{h}^T\end{aligned} \end{aligned} ∂x∂(Wx+b)=W∂b∂(Wx+b)=I(单位矩阵)∂u∂(uTh)=hT

回到神经网络

怎么计算 ∂ s ∂ b \frac{\partial s}{\partial b} ∂b∂s?

  1. 把等式拆解成简单的几个分块
  2. 应用链式法则
  3. 写下雅各比表达式

怎么计算 ∂ s ∂ w \frac{\partial s}{\partial w} ∂w∂s?


δ \delta δ 是局部误差符号,是固定的。

关于矩阵的导数:输出形状

雅可比公式表达: 如果有一个函数 y = f ( x ) ,其中 x 是一个向量, y 是一个向量, 则雅可比矩阵 J 的元素 J i j 表示 y i 对 x j 的偏导数。 雅可比公式表达:\\ 如果有一个函数 y = f(x),其中 x 是一个向量,y 是一个向量,\\ 则雅可比矩阵\ J\ 的元素\ J_{ij}\ 表示\ y_i\ 对\ x_j\ 的偏导数。 雅可比公式表达:如果有一个函数y=f(x),其中x是一个向量,y是一个向量,则雅可比矩阵 J 的元素 Jij 表示 yi 对 xj 的偏导数。

W ∈ R n × m W\in\mathbb{R}^{n\times m} W∈Rn×m , ∂ s ∂ W \frac{\partial s}{\partial W} ∂W∂s 的形状是:

  • " 给定一个具有 m m m 输出和 n n n 输入的函数,它的雅可比矩阵是一个 m × n m\times n m×n 偏导数矩阵。"
  • 1个输出, n × m n\times m n×m 个输入,得到的应该是 1 × n m 1\times nm 1×nm 的雅可比矩阵?一个很长的低向量
    • 问题: 这样不方便更新参数 θ n e w = θ o l d − α ∇ θ J ( θ ) \theta^{new}=\theta^{old}-\alpha\nabla_\theta J(\theta) θnew=θold−α∇θJ(θ),都应该是 n × m n\times m n×m
    • 解决: 脱离数学,使用形状约定 :导数的矩阵形状等于参数的矩阵形状
      • ∂ s ∂ W \frac{\partial s}{\partial W} ∂W∂s 的形状是 n × m n\times m n×m
      • [ ∂ s ∂ W 11 ⋯ ∂ s ∂ W 1 m ⋮ ⋱ ⋮ ∂ s ∂ W n 1 ⋯ ∂ s ∂ W n m ] \left.\left[\begin{matrix}\frac{\partial s}{\partial W_{11}}&\cdots&\frac{\partial s}{\partial W_{1m}}\\\vdots&\ddots&\vdots\\\frac{\partial s}{\partial W_{n1}}&\cdots&\frac{\partial s}{\partial W_{nm}}\end{matrix}\right.\right] ∂W11∂s⋮∂Wn1∂s⋯⋱⋯∂W1m∂s⋮∂Wnm∂s

b ∈ R n × 1 b\in\mathbb{R}^{n\times 1} b∈Rn×1 , ∂ s ∂ b \frac{\partial s}{\partial b} ∂b∂s 的形状是:

  • ∂ s ∂ b = h T ∘ f ′ ( z ) \frac{\partial s}{\partial\boldsymbol{b}}=\boldsymbol{h}^T\circ f^{\prime}(z) ∂b∂s=hT∘f′(z) 是行向量
  • 但是习惯上 梯度应该是一个列向量 因为 b b b 是一个列向量

雅可比矩阵形式(这使得链式法则很容易,对计算微积分很有意义) 和 形状约定(这使得SGD很容易实现)之间的分歧。

  • 解决 :两个选择
    • 尽量使用雅可比矩阵形式(不完全使用),最后按照形状约定进行整形
      • 最后转置 ∂ s ∂ b \frac{\partial s}{\partial b} ∂b∂s 使导数成为列向量(而不是按照雅各比矩阵形式的行向量),
      • 通过 δ T \delta^T δT 来实现,这样始终遵循形状约定。
    • 一直遵循形状约定
      • 查看维度,找出何时转置 和/或 重新排序项。

关于矩阵的导数(按照雅各比矩阵形式)

∂ s ∂ W = δ ∂ z ∂ W \quad\frac{\partial s}{\partial W}=\boldsymbol{\delta}\frac{\partial z}{\partial W} ∂W∂s=δ∂W∂z

δ \delta δ 将出现在我们的答案中。

另一项应该是 x x x ,因为 z = W x + b z=Wx+b z=Wx+b

∂ s ∂ b = δ ∂ z ∂ b \quad\frac{\partial s}{\partial b}=\boldsymbol{\delta}\frac{\partial z}{\partial b} ∂b∂s=δ∂b∂z

δ \delta δ 将出现在我们的答案中。

另一项应该是 1 1 1 ,因为 z = W x + b z=Wx+b z=Wx+b

这表明 ∂ s ∂ W = δ T x T \frac{\partial s}{\partial W}=\boldsymbol{\delta}^T\boldsymbol{x}^T ∂W∂s=δTxT ∂ s ∂ b = δ T \frac{\partial s}{\partial b}=\boldsymbol{\delta}^T ∂b∂s=δT

δ \delta δ 是 z 处的局部误差信号

x 是本地输入信号

总结

反向传播

求导,使用链式法则

构建计算图

  • 前向传播阶段

神经网络的基本附加元素是 发回梯度,告诉我们怎么更新模型的参数,使得模型在 获得损失函数后进行学习(最小化损失)。

  • 反向传播阶段
  • 反向传播:单个节点

  • 反向传播:多个节点
  • 一个例子
    反向传播最后的结果体现 改变输入对输出的影响 ,上涨/减少这个变量的多少倍

开始计算


就像前面手动计算梯度下降那样

在一般的计算图中进行反向传播计算的流程

现在的深度学习神经网络框架(Tensorflow, PyTorch, etc...)可以自动做反向传播,但是主要让层/节点编写器手动计算局部导数。我们需要为图中的特定节点或层添加内容。

反向传播的具体实现

python 复制代码
class ComputationalGraph(object):
	#..... 
	def forward(inputs):
		# 1.[pass inputs to input gates...] 
		# 2. forward the computational graph: 
		# 根据节点在计算图中的依赖关系对节点进行拓扑排序
		for gate in self .graph.nodes_topologically_sorted(): 
			gate.forward()
		return loss # the final gate in the graph outputs the loss 
	def backward():
		# 反转图的拓扑排序
		for gate in reversed(self.graph.nodes_topologically_sorted()):
			gate.backward() # little piece of backprop (chain rule applied) 
		return inputs_gradients
		
手动实现前向/后向API

总结

  • 反向传播:下游梯度 = 上游梯度 * 局部梯度
  • 前向传播计算出当前参数的值,然后进行反向传播以计算出损失的梯度(当前参数的损失)。
  • 现在的深度学习神经网络框架(Tensorflow, PyTorch, etc...)可以自动做反向传播,我们不用知道具体是怎么操作的,就像我们使用gcc来编译c代码,但是我们不需要具体知道gcc是怎么操作的。
相关推荐
刀客1232 分钟前
python3+TensorFlow 2.x(四)反向传播
人工智能·python·tensorflow
SpikeKing8 分钟前
LLM - 大模型 ScallingLaws 的设计 100B 预训练方案(PLM) 教程(5)
人工智能·llm·预训练·scalinglaws·100b·deepnorm·egs
小枫@码32 分钟前
免费GPU算力,不花钱部署DeepSeek-R1
人工智能·语言模型
liruiqiang0533 分钟前
机器学习 - 初学者需要弄懂的一些线性代数的概念
人工智能·线性代数·机器学习·线性回归
Icomi_37 分钟前
【外文原版书阅读】《机器学习前置知识》1.线性代数的重要性,初识向量以及向量加法
c语言·c++·人工智能·深度学习·神经网络·机器学习·计算机视觉
微学AI40 分钟前
GPU算力平台|在GPU算力平台部署可图大模型Kolors的应用实战教程
人工智能·大模型·llm·gpu算力
西猫雷婶42 分钟前
python学opencv|读取图像(四十六)使用cv2.bitwise_or()函数实现图像按位或运算
人工智能·opencv·计算机视觉
IT古董42 分钟前
【深度学习】常见模型-生成对抗网络(Generative Adversarial Network, GAN)
人工智能·深度学习·生成对抗网络
Jackilina_Stone43 分钟前
【论文阅读笔记】“万字”关于深度学习的图像和视频阴影检测、去除和生成的综述笔记 | 2024.9.3
论文阅读·人工智能·笔记·深度学习·ai
远洋录1 小时前
AI Agent的安全实践:权限控制与数据保护
人工智能·ai·ai agent