【GPU驱动开发】-GPU架构简介

前言

不必害怕未知,无需恐惧犯错,做一个Creator!

GPU(Graphics Processing Unit,图形处理单元)是一种专门用于处理图形和并行计算的处理器。GPU系统架构通常包括硬件和软件层面的组件。

一、总体流程

应用程序请求图形操作

应用程序通过图形API(如OpenGL、Vulkan)发送图形操作请求。
图形API调用GPU驱动程序

图形API将请求传递给GPU驱动程序。
GPU驱动程序解释和执行

GPU驱动程序将高级图形指令解释为底层硬件指令,然后执行这些指令。
结果发送到显示服务器

渲染结果发送回显示服务器,显示服务器负责在屏幕上渲染图形。

二、硬件层面

a. 流处理器(Streaming Processors):

GPU的核心部分是流处理器,也称为CUDA核心。它们执行计算任务,并能够同时处理多个数据流,从而实现并行计算。每个流处理器可以执行特定的指令集,类似于CPU中的处理器核心。
b. 图形处理单元(Graphics Processing Clusters,GPCs):

GPC是GPU中的一个硬件单元,包含多个流处理器、纹理单元和光栅化单元。每个GPC能够独立执行图形和计算任务。
c. 纹理单元(Texture Units):

纹理单元负责处理纹理映射,将图像映射到3D模型上。它们可以加速图形渲染中的纹理贴图操作。
d. 光栅化单元(Raster Operation Processors,ROPs):

ROPs负责将图形渲染的最终结果输出到屏幕上。它们执行混合、深度测试等操作,确保图形正确呈现。
e. 内存子系统:

GPU通常拥有自己的显存,用于存储图形数据和中间计算结果。高带宽、低延迟的显存对于GPU的性能至关重要。近年来,一些GPU还支持共享内存,使得GPU能够更好地与主系统内存进行协同工作。
f. GPU总线:

GPU通过总线与主板和CPU通信。PCI Express(PCIe)是一种常见的总线标准,用于连接GPU和计算机系统。

三、软件层面

a.驱动程序:

GPU驱动程序是连接操作系统和GPU硬件的软件层。它负责将操作系统发出的指令转换为GPU可以理解的指令,并管理GPU的资源。NVIDIA的CUDA和AMD的ROCm是两种常见的GPU编程框架,它们提供了GPU编程的API和工具。
b. 编程模型:

GPU编程通常采用并行计算的模型,其中任务被分解成许多小的并行任务,由GPU的流处理器并行执行。CUDA和OpenCL是两种广泛使用的GPU编程语言,它们允许开发人员直接利用GPU的并行性。
c. 图形API:

除了用于通用计算外,GPU还用于图形渲染。OpenGL和DirectX是两种常见的图形API,它们提供了用于渲染图形和处理图形效果的接口。
d. 深度学习框架:

近年来,GPU在深度学习领域的应用迅速增加。深度学习框架如TensorFlow和PyTorch支持GPU加速,使得神经网络训练和推断等任务能够受益于GPU的并行计算能力。

相关推荐
生成论实验室17 小时前
生成论之基:“阴阳”作为元规则的重构与证成——基于《易经》与《道德经》的古典重诠与现代显象
人工智能·科技·神经网络·算法·架构
俊哥V18 小时前
AI一周事件(2026年01月01日-01月06日)
人工智能·ai
爱跑马的程序员18 小时前
UMS9620 展锐平台增加一个虚拟陀螺仪
驱动开发·安卓·传感器·展锐·虚拟陀螺·传感器驱动
向量引擎18 小时前
【万字硬核】解密GPT-5.2-Pro与Sora2底层架构:从Transformer到世界模型,手撸一个高并发AI中台(附Python源码+压测报告)
人工智能·gpt·ai·aigc·ai编程·ai写作·api调用
俊哥V18 小时前
[笔记.AI]谷歌Gemini-Opal上手初探
人工智能·ai·gemini·opal
code bean18 小时前
【AI】AI大模型之流式传输(前后端技术实现)
人工智能·ai·大模型·流式传输
被遗忘的旋律.19 小时前
Linux驱动开发笔记(二十三)—— regmap
linux·驱动开发·笔记
JOEH6019 小时前
🔥 Redis 缓存穿透、击穿、雪崩:别再只背八股文了,实战代码教你彻底解决!
后端·架构
明洞日记20 小时前
【VTK手册034】 vtkGeometryFilter 深度解析:高性能几何提取与转换专家
c++·图像处理·算法·ai·vtk·图形渲染
jgyzl20 小时前
2026.1.7 tlias三层架构
java·mysql·架构