本期推文我们介绍一个可以绘制颇具"艺术 "风格地图的可视化包-cartography,主要涉及的内容如下:
- 
R-cartography 简介 
- 
R-cartography 实例应用 
- 
所有完整代码都已整理之我们的线上课程,有需要的同学+v yidianshuyulove 咨询 
R-cartography 简介
说到cartography包,用Python绘图的小伙伴可能会想到cartopy(Basemap的下一代地图可视化绘制包),下面就简单介绍下cartography。
- 官网介绍
cartography官网如下:http://riatelab.github.io/cartography/docs/articles/cartography.html (可点击 cartography官网)官方介绍如下:cartography包的目的是获得具有经典制图或GIS软件构建的主题图的视觉质量 的主题图。用户可能属于以下两类之一:使用R的制图师或愿意创建地图的使用者。制图使用sf或sp对象生成基本图形。由于程序包的大多数内部结构都依赖于sf功能,因此空间对象的首选格式是sf。(官方直译的哈)
通过介绍我们可以知道,cartography主要基于sf对象进行绘图,所以我们在绘制之前需将数据(地图数据或者点数据)转换成sf对象。
- 可视化专题图介绍
cartography包官网提供了多种优秀的地图可视化绘制专题,这类可视化作品和一般的地图作品有些不一样,透露出一种"艺术 "气息。 这里我们列举几个比较样例供大家参考,更多样例可参看官网哦!
- 
样例1 library(sf) 
 library(cartography)path to the geopackage file embedded in cartographypath_to_gpkg <- system.file("gpkg/mtq.gpkg", package="cartography") import to an sf objectmtq <- st_read(dsn = path_to_gpkg, quiet = TRUE) download osm tilesmtq.osm <- getTiles( 
 x = mtq,
 type = "OpenStreetMap",
 zoom = 11,
 crop = TRUE
 )plot osm tilestilesLayer(x = mtq.osm) plot municipalities (only borders are plotted)plot(st_geometry(mtq), col = NA, border = "grey", add=TRUE) plot populationpropSymbolsLayer( 
 x = mtq,
 var = "POP",
 inches = 0.25,
 col = "brown4",
 legend.pos = "topright",
 legend.title.txt = "Total population"
 )layoutlayoutLayer(title = "Population Distribution in Martinique", 
 sources = "Sources: Insee and IGN, 2018\n© OpenStreetMap contributors.\nTiles style under CC BY-SA, www.openstreetmap.org/copyright.",
 author = paste0("cartography ", packageVersion("cartography")),
 frame = FALSE, north = FALSE, tabtitle = TRUE)north arrownorth(pos = "topleft") 
可视化结果如下:

地图散点图
- 
样例2 library(sf) 
 library(cartography)path to the geopackage file embedded in cartographypath_to_gpkg <- system.file("gpkg/mtq.gpkg", package="cartography") import to an sf objectmtq <- st_read(dsn = path_to_gpkg, quiet = TRUE) transform municipality multipolygons to (multi)linestringsmtq_pencil <- getPencilLayer( 
 x = mtq,
 size = 400,
 lefthanded = F
 )plot municipalities (only the backgroung color is plotted)plot(st_geometry(mtq), col = "white", border = NA, bg = "lightblue1") plot administrative statustypoLayer( 
 x = mtq_pencil,
 var="STATUS",
 col = c("aquamarine4", "yellow3","wheat"),
 lwd = .7,
 legend.values.order = c("Prefecture",
 "Sub-prefecture",
 "Simple municipality"),
 legend.pos = "topright",
 legend.title.txt = "",
 add = TRUE
 )plot municipalitiesplot(st_geometry(mtq), lwd = 0.5, border = "grey20", add = TRUE, lty = 3) labels for a few municipalitieslabelLayer(x = mtq[mtq$STATUS != "Simple municipality",], txt = "LIBGEO", 
 cex = 0.9, halo = TRUE, r = 0.15)title, source, authorlayoutLayer(title = "Administrative Status", 
 sources = "Sources: Insee and IGN, 2018",
 author = paste0("cartography ", packageVersion("cartography")),
 north = FALSE, tabtitle = TRUE, postitle = "right",
 col = "white", coltitle = "black")north arrownorth(pos = "topleft") 
可视化结果如下:

铅笔风格主题地图
R-cartography 实例应用
我们使用之前空间插值系列的数据进行不同主题地图的绘制,首先 ,我们将所使用数据转换成sf对象,代码如下:
library(sf)
library(cartography)
library(openxlsx) # 读取Excel数据
jiangsu_shp <- "江苏省.json"
jiangsu <- sf::read_sf(jiangsu_shp)
file <- "pmdata.xlsx"
scatter_df <- read.xlsx(file)
scatter_sf <- st_as_sf(scatter_df,coords = c("lon", "lat"),crs = 4326)接下来,我们进行部分样例的可视化绘制:
- 
演示-1 plot(sf::st_geometry(jiangsu),col="#f2efe9", border="#b38e43", bg = "#aad3df",lwd = 0.5) plot PM2.5propSymbolsLayer( 
 x = scatter_sf,
 var = "PM2.5",
 #inches = 0.18,
 col = "brown4",
 legend.pos = "topright",
 legend.title.txt = "PM2.5"
 )layoutlayoutLayer(title = "PM2.5 Values in NanJing", 
 author = paste0("cartography ", packageVersion("cartography"),"\nVisualization by DataCharm"),
 frame = FALSE, north = FALSE, tabtitle = TRUE)north arrownorth(pos = "topleft") 
可视化结果如下:

当然,我们还可以添加类别(label)属性进行绘制:
- 
演示-2 #par(mar = c(0.5,1,0.5,0.5)) Plot the municipalitiespdf("G:\DataCharm\可视化包介绍(绘制)\空间相关\cartography_02.pdf") 
 plot(st_geometry(jiangsu), col="#f2efe9", border="#b38e43", bg = "#aad3df",
 lwd = 0.5)Plot symbols with choropleth colorationpropSymbolsTypoLayer( 
 x = scatter_sf,
 var = "PM2.5",
 inches = 0.25,
 symbols = "square",
 border = "white",
 lwd = .5,
 legend.var.pos = "topright",
 legend.var.title.txt = "PM2.5",
 var2 = "label",
 legend.var2.values.order = c("1", "2","3","4"),
 col = carto.pal(pal1 = "multi.pal", n1 = 4),
 legend.var2.pos = c(117, 32.5),
 legend.var2.title.txt = "Scatter Class"
 )layoutlayoutLayer(title="PM2.5 Values in NanJing", 
 author = paste0("cartography ", packageVersion("cartography"),"\nVisualization by DataCharm"),
 scale = 5, frame = FALSE, north = FALSE, tabtitle = TRUE)north arrownorth(pos = "topleft") 
 dev.off()
可视化结果如下:

优质学习资源推荐
