基于chatgpt的聊天机器人

基于chatgpt的聊天机器人

以下是一个基于Python的示例代码,展示如何在本地环境中使用预训练的ChatGPT模型构建一个简单的聊天机器人应用程序。在这个示例中,我们将使用Hugging Face Transformers库加载GPT-2模型,并创建一个基于命令行的用户界面。

步骤 1: 安装必要的库

确保您已经安装了以下库:

pip install transformers

pip install torch

步骤 2: 编写代码

from transformers import GPT2LMHeadModel, GPT2Tokenizer

加载预训练的GPT-2模型和分词器

model = GPT2LMHeadModel.from_pretrained("gpt2")

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

设置模型为eval模式

model.eval()

对话函数

cpp 复制代码
def chatbot():
    user_input = input("You: ")
    input_ids = tokenizer.encode("User: " + user_input + " ChatGPT:")
    input_ids = torch.tensor(input_ids).unsqueeze(0)
    
    # 生成回答
    with torch.no_grad():
        outputs = model.generate(input_ids, max_length=100, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print("ChatGPT:", response)

主循环

while True:

chatbot()

步骤 3: 运行应用程序

运行上述代码,您将看到一个命令行界面,您可以输入问题并与ChatGPT模型进行对话交互。

请注意,这只是一个简单的示例,您可以根据需求进行扩展和定制。希望这能帮助您开始构建一个本地聊天机器人应用程序!

雅思口语

您可以使用提示词工程来优化机器人以用于练习雅思口语。通过添加与雅思口语话题相关的提示词,您可以帮助ChatGPT更好地理解用户的需求,并生成与口语练习相关的回答。

以下是如何使用提示词工程来优化机器人以用于练习雅思口语的示例代码:

步骤 1: 添加雅思口语提示词

在对话函数中,添加与雅思口语话题相关的提示词,例如"口语练习"、"雅思口语"等。

python 复制代码
def chatbot():
    user_input = input("You: ")
    prompt = "User: " + user_input + " ChatGPT:"

    # 添加雅思口语提示词
    if "口语练习" in user_input:
        prompt = "口语练习" + user_input.replace("口语练习", "") + " ChatGPT:"
    elif "雅思口语" in user_input:
        prompt = "雅思口语" + user_input.replace("雅思口语", "") + " ChatGPT:"

    input_ids = tokenizer.encode(prompt)
    input_ids = torch.tensor(input_ids).unsqueeze(0)
    
    # 生成回答
    with torch.no_grad():
        outputs = model.generate(input_ids, max_length=100, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print("ChatGPT:", response)

步骤 2: 运行应用程序

运行更新后的代码,用户可以输入带有雅思口语提示词的问题,例如"口语练习如何提高发音"、"雅思口语怎样练习描述图片",ChatGPT将根据提示词生成更相关的口语练习回答。

通过使用提示词工程,您可以提高机器人在雅思口语练习方面的定制性和针对性,帮助用户更好地进行口语练习。祝您的项目取得成功!

相关推荐
浠寒AI41 分钟前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
weixin_505154461 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
Best_Me071 小时前
深度学习模块缝合
人工智能·深度学习
YuTaoShao1 小时前
【论文阅读】YOLOv8在单目下视多车目标检测中的应用
人工智能·yolo·目标检测
算家计算2 小时前
字节开源代码模型——Seed-Coder 本地部署教程,模型自驱动数据筛选,让每行代码都精准落位!
人工智能·开源
伪_装2 小时前
大语言模型(LLM)面试问题集
人工智能·语言模型·自然语言处理
gs801402 小时前
Tavily 技术详解:为大模型提供实时搜索增强的利器
人工智能·rag
music&movie2 小时前
算法工程师认知水平要求总结
人工智能·算法
量子位3 小时前
苹果炮轰推理模型全是假思考!4 个游戏戳破神话,o3/DeepSeek 高难度全崩溃
人工智能·deepseek
黑鹿0223 小时前
机器学习基础(四) 决策树
人工智能·决策树·机器学习