基于chatgpt的聊天机器人

基于chatgpt的聊天机器人

以下是一个基于Python的示例代码,展示如何在本地环境中使用预训练的ChatGPT模型构建一个简单的聊天机器人应用程序。在这个示例中,我们将使用Hugging Face Transformers库加载GPT-2模型,并创建一个基于命令行的用户界面。

步骤 1: 安装必要的库

确保您已经安装了以下库:

pip install transformers

pip install torch

步骤 2: 编写代码

from transformers import GPT2LMHeadModel, GPT2Tokenizer

加载预训练的GPT-2模型和分词器

model = GPT2LMHeadModel.from_pretrained("gpt2")

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

设置模型为eval模式

model.eval()

对话函数

cpp 复制代码
def chatbot():
    user_input = input("You: ")
    input_ids = tokenizer.encode("User: " + user_input + " ChatGPT:")
    input_ids = torch.tensor(input_ids).unsqueeze(0)
    
    # 生成回答
    with torch.no_grad():
        outputs = model.generate(input_ids, max_length=100, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print("ChatGPT:", response)

主循环

while True:

chatbot()

步骤 3: 运行应用程序

运行上述代码,您将看到一个命令行界面,您可以输入问题并与ChatGPT模型进行对话交互。

请注意,这只是一个简单的示例,您可以根据需求进行扩展和定制。希望这能帮助您开始构建一个本地聊天机器人应用程序!

雅思口语

您可以使用提示词工程来优化机器人以用于练习雅思口语。通过添加与雅思口语话题相关的提示词,您可以帮助ChatGPT更好地理解用户的需求,并生成与口语练习相关的回答。

以下是如何使用提示词工程来优化机器人以用于练习雅思口语的示例代码:

步骤 1: 添加雅思口语提示词

在对话函数中,添加与雅思口语话题相关的提示词,例如"口语练习"、"雅思口语"等。

python 复制代码
def chatbot():
    user_input = input("You: ")
    prompt = "User: " + user_input + " ChatGPT:"

    # 添加雅思口语提示词
    if "口语练习" in user_input:
        prompt = "口语练习" + user_input.replace("口语练习", "") + " ChatGPT:"
    elif "雅思口语" in user_input:
        prompt = "雅思口语" + user_input.replace("雅思口语", "") + " ChatGPT:"

    input_ids = tokenizer.encode(prompt)
    input_ids = torch.tensor(input_ids).unsqueeze(0)
    
    # 生成回答
    with torch.no_grad():
        outputs = model.generate(input_ids, max_length=100, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print("ChatGPT:", response)

步骤 2: 运行应用程序

运行更新后的代码,用户可以输入带有雅思口语提示词的问题,例如"口语练习如何提高发音"、"雅思口语怎样练习描述图片",ChatGPT将根据提示词生成更相关的口语练习回答。

通过使用提示词工程,您可以提高机器人在雅思口语练习方面的定制性和针对性,帮助用户更好地进行口语练习。祝您的项目取得成功!

相关推荐
大囚长11 分钟前
deepseek+ansible实现AI自动化集群部署
人工智能·自动化·ansible
程序边界11 分钟前
AI+游戏开发:如何用 DeepSeek 打造高性能贪吃蛇游戏
人工智能·游戏
CodeJourney.20 分钟前
光储直流微电网:能源转型的关键力量
数据库·人工智能·算法·能源
艾思科蓝 AiScholar23 分钟前
【 IEEE出版 | 快速稳定EI检索 | 往届已EI检索】2025年储能及能源转换国际学术会议(ESEC 2025)
人工智能·计算机网络·自然语言处理·数据挖掘·自动化·云计算·能源
Fulima_cloud23 分钟前
智慧锂电:开启能源新时代的钥匙
大数据·人工智能·物联网
GUOYUGRA23 分钟前
高纯氢能源在线监测分析系统组成和作用
人工智能·算法·机器学习
机器人之树小风1 小时前
ABB机器人Profinet或Ethernet/IP通讯的GSD/EDS文件获取方法
经验分享·科技·机器人
沸点小助手1 小时前
Remote-SSH × 自定义模型 | Trae 体验活动 No.1
人工智能
꧁༺△再临ཊ࿈ཏTSC△༻꧂1 小时前
【数码科技】文心一言4.0 VS DEEPSEEK V3
人工智能·文心一言
明月与玄武1 小时前
AI把汽车变成“移动硅基生命体“
人工智能·汽车