基于chatgpt的聊天机器人

基于chatgpt的聊天机器人

以下是一个基于Python的示例代码,展示如何在本地环境中使用预训练的ChatGPT模型构建一个简单的聊天机器人应用程序。在这个示例中,我们将使用Hugging Face Transformers库加载GPT-2模型,并创建一个基于命令行的用户界面。

步骤 1: 安装必要的库

确保您已经安装了以下库:

pip install transformers

pip install torch

步骤 2: 编写代码

from transformers import GPT2LMHeadModel, GPT2Tokenizer

加载预训练的GPT-2模型和分词器

model = GPT2LMHeadModel.from_pretrained("gpt2")

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

设置模型为eval模式

model.eval()

对话函数

cpp 复制代码
def chatbot():
    user_input = input("You: ")
    input_ids = tokenizer.encode("User: " + user_input + " ChatGPT:")
    input_ids = torch.tensor(input_ids).unsqueeze(0)
    
    # 生成回答
    with torch.no_grad():
        outputs = model.generate(input_ids, max_length=100, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print("ChatGPT:", response)

主循环

while True:

chatbot()

步骤 3: 运行应用程序

运行上述代码,您将看到一个命令行界面,您可以输入问题并与ChatGPT模型进行对话交互。

请注意,这只是一个简单的示例,您可以根据需求进行扩展和定制。希望这能帮助您开始构建一个本地聊天机器人应用程序!

雅思口语

您可以使用提示词工程来优化机器人以用于练习雅思口语。通过添加与雅思口语话题相关的提示词,您可以帮助ChatGPT更好地理解用户的需求,并生成与口语练习相关的回答。

以下是如何使用提示词工程来优化机器人以用于练习雅思口语的示例代码:

步骤 1: 添加雅思口语提示词

在对话函数中,添加与雅思口语话题相关的提示词,例如"口语练习"、"雅思口语"等。

python 复制代码
def chatbot():
    user_input = input("You: ")
    prompt = "User: " + user_input + " ChatGPT:"

    # 添加雅思口语提示词
    if "口语练习" in user_input:
        prompt = "口语练习" + user_input.replace("口语练习", "") + " ChatGPT:"
    elif "雅思口语" in user_input:
        prompt = "雅思口语" + user_input.replace("雅思口语", "") + " ChatGPT:"

    input_ids = tokenizer.encode(prompt)
    input_ids = torch.tensor(input_ids).unsqueeze(0)
    
    # 生成回答
    with torch.no_grad():
        outputs = model.generate(input_ids, max_length=100, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print("ChatGPT:", response)

步骤 2: 运行应用程序

运行更新后的代码,用户可以输入带有雅思口语提示词的问题,例如"口语练习如何提高发音"、"雅思口语怎样练习描述图片",ChatGPT将根据提示词生成更相关的口语练习回答。

通过使用提示词工程,您可以提高机器人在雅思口语练习方面的定制性和针对性,帮助用户更好地进行口语练习。祝您的项目取得成功!

相关推荐
唐某人丶2 小时前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc
FIT2CLOUD飞致云2 小时前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
阿里云大数据AI技术2 小时前
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型
人工智能
袁庭新2 小时前
全球首位AI机器人部长,背负反腐重任
人工智能·aigc
机器之心2 小时前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
算家计算3 小时前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
量子位3 小时前
GPT-5编程专用版发布!独立连续编程7小时,简单任务提速10倍,VS Code就能用
gpt·chatgpt
量子位3 小时前
马斯克周末血裁xAI 500人
人工智能·ai编程
资源开发与学习3 小时前
机器人运动规划源码解析
机器人
算家计算3 小时前
OpenAI最强编程模型GPT-5-Codex发布!可独立编程7小时,编程效率提升10倍
人工智能·ai编程·资讯