基于chatgpt的聊天机器人

基于chatgpt的聊天机器人

以下是一个基于Python的示例代码,展示如何在本地环境中使用预训练的ChatGPT模型构建一个简单的聊天机器人应用程序。在这个示例中,我们将使用Hugging Face Transformers库加载GPT-2模型,并创建一个基于命令行的用户界面。

步骤 1: 安装必要的库

确保您已经安装了以下库:

pip install transformers

pip install torch

步骤 2: 编写代码

from transformers import GPT2LMHeadModel, GPT2Tokenizer

加载预训练的GPT-2模型和分词器

model = GPT2LMHeadModel.from_pretrained("gpt2")

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

设置模型为eval模式

model.eval()

对话函数

cpp 复制代码
def chatbot():
    user_input = input("You: ")
    input_ids = tokenizer.encode("User: " + user_input + " ChatGPT:")
    input_ids = torch.tensor(input_ids).unsqueeze(0)
    
    # 生成回答
    with torch.no_grad():
        outputs = model.generate(input_ids, max_length=100, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print("ChatGPT:", response)

主循环

while True:

chatbot()

步骤 3: 运行应用程序

运行上述代码,您将看到一个命令行界面,您可以输入问题并与ChatGPT模型进行对话交互。

请注意,这只是一个简单的示例,您可以根据需求进行扩展和定制。希望这能帮助您开始构建一个本地聊天机器人应用程序!

雅思口语

您可以使用提示词工程来优化机器人以用于练习雅思口语。通过添加与雅思口语话题相关的提示词,您可以帮助ChatGPT更好地理解用户的需求,并生成与口语练习相关的回答。

以下是如何使用提示词工程来优化机器人以用于练习雅思口语的示例代码:

步骤 1: 添加雅思口语提示词

在对话函数中,添加与雅思口语话题相关的提示词,例如"口语练习"、"雅思口语"等。

python 复制代码
def chatbot():
    user_input = input("You: ")
    prompt = "User: " + user_input + " ChatGPT:"

    # 添加雅思口语提示词
    if "口语练习" in user_input:
        prompt = "口语练习" + user_input.replace("口语练习", "") + " ChatGPT:"
    elif "雅思口语" in user_input:
        prompt = "雅思口语" + user_input.replace("雅思口语", "") + " ChatGPT:"

    input_ids = tokenizer.encode(prompt)
    input_ids = torch.tensor(input_ids).unsqueeze(0)
    
    # 生成回答
    with torch.no_grad():
        outputs = model.generate(input_ids, max_length=100, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print("ChatGPT:", response)

步骤 2: 运行应用程序

运行更新后的代码,用户可以输入带有雅思口语提示词的问题,例如"口语练习如何提高发音"、"雅思口语怎样练习描述图片",ChatGPT将根据提示词生成更相关的口语练习回答。

通过使用提示词工程,您可以提高机器人在雅思口语练习方面的定制性和针对性,帮助用户更好地进行口语练习。祝您的项目取得成功!

相关推荐
jiayong232 分钟前
Spring AI Alibaba 深度解析(三):实战示例与最佳实践
java·人工智能·spring
北邮刘老师18 分钟前
【智能体互联协议解析】需要“智能体名字系统”(ANS)吗?
网络·人工智能·大模型·智能体·智能体互联网
梁辰兴38 分钟前
AI解码千年甲骨文,指尖触碰的文明觉醒!
人工智能·ai·ai+·文明·甲骨文·ai赋能·梁辰兴
阿里云大数据AI技术41 分钟前
# Hologres Dynamic Table:高效增量刷新,构建实时统一数仓的核心利器
人工智能·数据分析
JxWang051 小时前
pandas计算某列每行带有分隔符的数据中包含特定值的次数
人工智能
能源系统预测和优化研究1 小时前
创新点解读:基于非线性二次分解的Ridge-RF-XGBoost时间序列预测(附代码实现)
人工智能·深度学习·算法
执笔论英雄1 小时前
【RL】ROLL下载模型流程
人工智能·算法·机器学习
لا معنى له1 小时前
目标分割介绍及最新模型----学习笔记
人工智能·笔记·深度学习·学习·机器学习·计算机视觉
carver w2 小时前
one-hot编码
人工智能
邮一朵向日葵2 小时前
企查查开放平台MCP:为AI智能体注入精准商业数据,驱动智能决策新时代
大数据·人工智能