介绍
概念
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出两倍 ,因而是接近平衡的。
性质
- 每个结点不是红色就是黑色。
- 根节点是黑色的。
- 如果一个节点是红色的,则它的两个孩子结点是黑色的。(不能出现连续红色)
- 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点。
- 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
红黑树的插入调整
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论
情况一: cur为红,p为红,g为黑,u存在且为红
u存在且为红,p,u变黑,g变红。
如果gg为黑,则不用处理了,gg为红,令g为cur,继续向上处理
情况二:cur为红,p为红,g为黑,u不存在/u存在且为黑(一定由情况一变化调整而来)
p为g的左孩子,cur为p的左孩子,则进行右单旋
p为g的右孩子,cur为p的右孩子,则进行左单旋
情况三:比情况二多了次旋转而已
代码:
cpp
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = BlACK;
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(kv);
if (kv.first > parent->_kv.first)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
if (grandfather->_left == parent)
{
Node* uncle = grandfather->_right;
//u存在且为红,变色处理,并继续往上处理
if (uncle && uncle->_col == RED)
{
parent->_col = BlACK;
uncle->_col = BlACK;
grandfather->_col = RED;
//continue to modify
cur = grandfather;
parent = cur->_parent;
}
//u不存在或u存在且为黑,旋转+变色
else
{
// g
// p u
//c
if (cur == parent->_left)
{
RotateR(grandfather);
parent->_col = BlACK;
grandfather->_col = RED;
}
else
{
// g
// p u
// c
RotateL(parent);
RotateR(grandfather);
parent->_col = RED;
grandfather->_col = RED;
cur->_col = BlACK;
}
break;
}
}
else
{
Node* uncle = grandfather->_left;
//u存在且为红,变色处理,并继续往上处理
if (uncle && uncle->_col == RED)
{
parent->_col = BlACK;
uncle->_col = BlACK;
grandfather->_col = RED;
//continue to modify
cur = grandfather;
parent = cur->_parent;
}
//u不存在或u存在且为黑,旋转+变色
else
{
// g
// u p
// c
if (cur == parent->_right)
{
RotateL(grandfather);
parent->_col = BlACK;
grandfather->_col = RED;
}
else
{
// g
// u p
// c
RotateR(parent);
RotateL(grandfather);
parent->_col = RED;
grandfather->_col = RED;
cur->_col = BlACK;
}
break;
}
}
_root->_col = BlACK;
}
return true;
}
红黑树的拷贝构造
cpp
RBTree(const RBTree& rb)
{
_root = CopyTree(rb._root, nullptr);
}
Node* CopyTree(Node* rbroot,Node* parent)
{
if (rbroot == nullptr)
return nullptr;
Node* newroot = new Node(rbroot->_kv);
newroot->_col = rbroot->_col;
newroot->_parent = parent;
newroot->_left = CopyTree(rbroot->_left, newroot);
newroot->_right = CopyTree(rbroot->_right, newroot);
return newroot;
}
set和map
RBTree的Iterator
cpp
template<class T,class Ref,class Ptr>
struct __RBTreeIterator
{
typedef RBTreeNode<T> Node;
typedef __RBTreeIterator<T, Ref, Ptr> Self;
Node* _node;
__RBTreeIterator(Node* node)
:_node(node)
{}
Ref operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
bool operator != (const Self & s)
{
return _node != s._node;
}
Self& operator++()
{
if (_node->_right)
{
//1.右不为空,找右子树的最左节点
Node* subleft = _node->_right;
while (subleft->_left)
{
subleft = subleft->_left;
}
_node = subleft;
}
else
{
//2.右为空,沿着到根的路径,找孩子是父亲左的那个祖先
Node* cur = _node;
Node* parent = cur->_parent;
while (parent && cur == parent->_right)
{
cur = parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
Self& operator--()
{
if (_node->_left)
{
//左不为空,找左子树的最右节点
Node* subright = _node->_left;
while (subright->_right)
{
subright = subright->_right;
}
_node = subright;
}
else
{
//左为空,找孩子是父亲的右的祖先
Node* cur = _node;
Node* parent = cur->_parent;
while (parent && parent->_left == cur)
{
cur = parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
};
template<class K,class T,class KeyOfT>
class RBTree
{
typedef RBTreeNode<T> Node;
public:
typedef __RBTreeIterator<T, T&, T*> iterator;
typedef __RBTreeIterator<const T, const T&, const T*> const_iterator;
iterator begin()
{
Node* cur = _root;
while (cur && cur->_left)
{
cur = cur->_left;
}
return iterator(cur);
}
iterator end()
{
return iterator(nullptr);
}
set/map和unordered_set/unordered_map区别
前者是底层是红黑树,双向迭代器,迭代器遍历是有序的;后者底层是哈希表,单向迭代器,迭代器遍历是无序的。